精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=2x3-3x2-12x+5.
(Ⅰ)求曲线y=f(x)在点x=1处的切线方程;
(Ⅱ)求函数y=f(x)在[0,3]的最值.

分析 (I)利用切线的斜率是函数在切点处导数,求出切线斜率,再利用直线方程的点斜式求出切线方程.
(II)先求导函数,确定函数在闭区间[-2,3]上的极值点及端点的值,进而计算极值点及端点的函数值可确定函数的最值.

解答 解:(Ⅰ)将x=1代入函数解析式得y=-8,------------------------(2分)
函数f(x)=2x3-3x2-12x+5.
y'=6x2-6x-12=6(x-2)(x+1),所以y'|x=1=-12----------------------------------(4分)
由直线方程的点斜式得y+8=-12(x-1)
所以函数在x=1处的切线方程为12x+y-4=0----------------------------------(6分)
(Ⅱ)y'=6x2-6x-12=6(x-2)(x+1)=0,
解得x=2或x=-1------------------------(8分)
x∈[0,3]
由于f(0)=5,f(2)=-15,f(3)=-4,-------------------------------(10分)
∴ymax=5,ymin=-15------------------------------(12分)

点评 本题以函数为载体,考查函数导数的几何意义、利用导数求闭区间上函数的最值,解题的关键是利用导数工具.属于导数的基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设p:2x2-3x+1≤0,q:x2-(2a+1)x+a(a+1)≤0,若非p是非q的必要不充分条件,则实数a的取值范围是(  )
A.(-∞,0)∪($\frac{1}{2}$,+∞)B.(-∞,0]∪[$\frac{1}{2}$,+∞)C.(0,$\frac{1}{2}$)D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在四棱锥A-BCDE中,底面BCDE为菱形,侧面ABE为等边三角形,且侧面ABE⊥底面BCDE,O,F分别为BE,DE的中点,点P在AC上,且AP=$\frac{1}{3}$AC.
(Ⅰ)求证:平面ACE⊥平面AOF;
(Ⅱ)求证:BP∥平面AOF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.我们知道:在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式为d=$\frac{{|{A{x_0}+B{y_0}+C}|}}{{\sqrt{{A^2}+{B^2}}}}$,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x+2y+2z+3=0的距离为(  )
A.3B.5C.$\frac{{5\sqrt{21}}}{7}$D.$3\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.现有n2(n≥4)个正数排列成一个n行n列的数表如下:
$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{…}&{{a}_{1n}}\\{{a}_{21}}&{{a}_{22}}&{…}&{{a}_{2n}}\\{…}&{…}&{…}&{…}\\{{a}_{n1}}&{{a}_{n2}}&{…}&{{a}_{nn}}\end{array})$
其中每一行的数都成等差数列,每一列的数都成等比数列且公比q都相等,若a26=1,a42=$\frac{1}{8}$,a44=$\frac{3}{16}$,则q的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知α,β是两个不重合的平面,m,n是两条不同的直线,则下列命题中正确的是(  )
A.若m∥α,m∥β,则α∥βB.若m∥n,m∥α,则n∥α
C.若α⊥β,m⊥α,n⊥β,则m⊥nD.若α⊥β,m⊥α,n∥β,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列事件:
(1)口袋里有伍角、壹角、壹元的硬币若干枚,随机地摸出一枚是壹角;
(2)在标准大气压下,水在90℃沸腾;
(3)射击运动员射击一次命中10环;
(4)同时掷两颗骰子,出现的点数之和不超过12,
其中是随机事件的有(  )
A.(1)B.(1)(2)C.(1)(3)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设p:实数x满足x2-4ax+3a2<0,其中a>0;q:实数x满足$\left\{\begin{array}{l}{{x}^{2}-x-6≤0}\\{{x}^{2}+3x-10>0}\end{array}\right.$.
(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若q是p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知角α满足,sin(α+$\frac{π}{4}$)=$\frac{1}{3}$,sin(α-$\frac{π}{4}$)=$\frac{1}{4}$,则tanα=7.

查看答案和解析>>

同步练习册答案