分析 (I)利用切线的斜率是函数在切点处导数,求出切线斜率,再利用直线方程的点斜式求出切线方程.
(II)先求导函数,确定函数在闭区间[-2,3]上的极值点及端点的值,进而计算极值点及端点的函数值可确定函数的最值.
解答 解:(Ⅰ)将x=1代入函数解析式得y=-8,------------------------(2分)
函数f(x)=2x3-3x2-12x+5.
y'=6x2-6x-12=6(x-2)(x+1),所以y'|x=1=-12----------------------------------(4分)
由直线方程的点斜式得y+8=-12(x-1)
所以函数在x=1处的切线方程为12x+y-4=0----------------------------------(6分)
(Ⅱ)y'=6x2-6x-12=6(x-2)(x+1)=0,
解得x=2或x=-1------------------------(8分)
x∈[0,3]
由于f(0)=5,f(2)=-15,f(3)=-4,-------------------------------(10分)
∴ymax=5,ymin=-15------------------------------(12分)
点评 本题以函数为载体,考查函数导数的几何意义、利用导数求闭区间上函数的最值,解题的关键是利用导数工具.属于导数的基础题.
科目:高中数学 来源: 题型:选择题
A. | (-∞,0)∪($\frac{1}{2}$,+∞) | B. | (-∞,0]∪[$\frac{1}{2}$,+∞) | C. | (0,$\frac{1}{2}$) | D. | [0,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 5 | C. | $\frac{{5\sqrt{21}}}{7}$ | D. | $3\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若m∥α,m∥β,则α∥β | B. | 若m∥n,m∥α,则n∥α | ||
C. | 若α⊥β,m⊥α,n⊥β,则m⊥n | D. | 若α⊥β,m⊥α,n∥β,则m∥n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1) | B. | (1)(2) | C. | (1)(3) | D. | (2)(4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com