(本题满分14分)设函数的定义域为,记函数的最大值为.
(1)求的解析式;(2)已知试求实数的取值范围.
(1) (2)
【解析】
试题分析:(1) ( i )当时,在单调递增,
-----------1分
(ii)时,的对称轴为,则在单调递增,
--------------2分
(iii)当时, 的对称轴为,
若 即时
在单调递减, ------------------3分
若 即时
--------------------4分
若 即时
在单调递增, -----------------------5分
--------------------6分
(2) 当时,
设, ------9分
在区间单调递增 -------------10分
在上不递减,
等价于或-----------12分
解得或 -------------------13分
的取值范围是 ----------14分
考点:二次函数求最值及解不等式
点评:本题求最值时需分情况讨论,对学生来说是一个难点
科目:高中数学 来源: 题型:
(本题满分14分)
设函数,。
(1)若,过两点和的中点作轴的垂线交曲线于点,求证:曲线在点处的切线过点;
(2)若,当时恒成立,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:2011——2012学年湖北省洪湖二中高三八月份月考试卷理科数学 题型:解答题
(本题满分14分)设椭圆的左、右焦点分别为F1与
F2,直线过椭圆的一个焦点F2且与椭圆交于P、Q两点,若的周长为。
(1)求椭圆C的方程;
(2)设椭圆C经过伸缩变换变成曲线,直线与曲线相切
且与椭圆C交于不同的两点A、B,若,求面积的取值范围。(O为坐标原点)
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省杭州市高三寒假作业数学卷三 题型:解答题
(本题满分14分)设M是由满足下列条件的函数构成的集合:“①方有实数根;②函数的导数满足”
(I)证明:函数是集合M中的元素;
(II)证明:函数具有下面的性质:对于任意,都存在,使得等式成立。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题
本题满分14分)
设函数.
(1)若,求函数的极值;
(2)若,试确定的单调性;
(3)记,且在上的最大值为M,证明:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com