精英家教网 > 高中数学 > 题目详情
若一个正三棱柱存在外接球与内切球,则它的外接球与内切球表面积之比为(  )
A、2:1B、3:1C、4:1D、5:1
分析:设正三棱柱底面正三角形的边长为a,当球内切于正三棱柱时,球的半径R1等于正三棱柱的底面正三角形的边心距,求出正三棱柱的高为2R1,当球外接正三棱柱时,球心是正三棱柱上下底面中心连线段的中点,且球心与正三棱柱两个底面正三角形构成两个正三棱锥,求出外接球的半径,即可求出内切球与外接球表面积之比.
解答:解:设正三棱柱底面正三角形的边长为a,
当球内切于正三棱柱时,球的半径R1等于正三棱柱的底面正三角形的边心距
3
6
a
,故正三棱柱的高为2×
3
6
a
=
3
3
a

当球外接正三棱柱时,球心是上下底面中心连线段的中点,且球心与正三棱柱两个底面正三角形构成两个正三棱锥,R22=(
3
6
a)
2
+(
3
3
a)
2

∴R2=
15
6
a
∴外接球与内切球半径之比为R1:R2=
15
6
a:
3
6
a
=
5
:1.
∴外接球与内切球表面积之比为5:1
故选D.
点评:本题是基础题,考查空间想象能力,分析问题解决问题的能力,是常考题型,求内切球与外接球的半径是解决本题的关键所在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若一个正三棱柱存在外接球与内切球,则它的外接球与内切球表面积之比为
 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年新疆兵团二中高三第五次月考理科数学试卷(解析版) 题型:选择题

若一个正三棱柱存在外接球与内切球,则它的外接球与内切球表面积之比为(    )

     A. 3 :1          B . 4 :1         C . 5 :1          D.  6 :1

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年甘肃省高三第一次诊断理科数学试卷(解析版) 题型:选择题

若一个正三棱柱存在外接球与内切球,则它的外接球与内切球表面积之比为

     A. 3 :1          B . 4 :1         C . 5 :1          D.  6 :1

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省五市高三第一次联考数学试卷(文科)(解析版) 题型:解答题

若一个正三棱柱存在外接球与内切球,则它的外接球与内切球表面积之比为   

查看答案和解析>>

同步练习册答案