精英家教网 > 高中数学 > 题目详情

【题目】已知两点,若直线上存在四个点,使得是直角三角形,则实数的取值范围是(

A.B.

C.D.

【答案】D

【解析】

根据MNP是直角三角形,转化为以MN为直径的圆和直线y=kx-3)相交,且k≠0,然后利用直线和圆相交的等价条件进行求解即可.

P1MxP4Mx时,此时存在两个直角三角形,

MN为直角三角形的斜边时,MNP是直角三角形,

要使直线y=kx-3)上存在四个点Pi=1234),

使得MNP是直角三角形,等价为以MN为直径的圆和直线y=kx-3)相交,且k≠0

圆心O到直线kx-y-3k=0的距离

平方得9k2<41+k2=4+4k2

5k2<4,即k2<,得

k≠0,∴实数k的取值范围是

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四个命题:

函数的最大值为1

的否定是

为锐角三角形,则有

函数在区间内单调递增的充分必要条件.

其中错误的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了改善空气质量,某市规定,从201811日起,对二氧化碳排放量超过的轻型汽车进行惩罚性征税.检测单位对甲乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下:(单位:

80

110

120

140

150

100

120

100

160

经测算得乙品牌轻型汽车二氧化碳排放量的平均值为.

1)求表中的值,并比较甲乙两品牌轻型汽车二氧化碳排放量的稳定性;

2)从被检测的5辆甲品牌汽车中随机抽取2辆,求至少有1辆二氧化碳排放量超过的概率.(注:方差,其中的平均数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生09之间取整数值的随机数,指定1234表示命中,567890表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989.据此估计,该运动员三次投篮恰有两次命中的概率为(

A.0.25B.0.2C.0.35D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市约有20万住户,为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值,若某住户某月用电量不超过度,则按平价(即原价)0.5(单位:元/度)计费;若某月用电量超过度,则超出部分按议价(单位:元/度)计费,未超出部分按平价计费.为确定的值,随机调查了该市100户的月用电量,统计分析后得到如图所示的频率分布直方图.根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表).

1)若该市计划让全市的住户在“阶梯电价”出台前后缴纳的电费不变,求临界值

2)在(1)的条件下,假定出台“阶梯电价”之后,月用电量未达度的住户用电量保持不变;月用电量超过度的住户节省“超出部分”的,试估计全市每月节约的电量;

3)在(1)(2)条件下,若出台“阶梯电价”前后全市缴纳电费总额不变,求议价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,曲线 的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线 的极坐标方程为 .

1)求直线和曲线的普通方程;

2)已知点,且直线和曲线交于两点,求 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作圆的两条切线,切点分别为,给出下列四个结论:

②若为直角三角形,则

外接圆的方程为

④直线的方程为.

其中所有正确结论的序号为(

A.②④B.③④C.②③D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长是短轴长的两倍,焦距为

1)求椭圆的标准方程;

2)不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,问:直线是否定向的,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的展开图如图二,其中四边形为边长等于的正方形,均为正三角形,在三棱锥中:

1)证明:平面平面

2)若的中点,求二面角的余弦值.

查看答案和解析>>

同步练习册答案