已知函数
(1)对任意的恒成立,求实数a的取值范围;
(2)对任意的的值域是,求实数a的取值范围.
科目:高中数学 来源: 题型:
若实数、、满足,则称比远离.
(1)若比1远离0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比远离;
(3)已知函数的定义域.任取,等于和中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分。
若实数、、满足,则称比接近.
(1)若比3接近0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比接近;
(3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
若实数、、满足,则称比接近.
(1)若比3接近0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比接近;
(3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
查看答案和解析>>
科目:高中数学 来源:2010年上海市高一上学期期中考试数学卷 题型:解答题
(本题满分12分)若实数、、满足,则称比接近.
(1)若比3接近0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比接近;
(3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最值和单调性(结论不要求证明).
查看答案和解析>>
科目:高中数学 来源:2010年高考试题(上海秋季)解析版(理) 题型:解答题
[番茄花园1] 本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。
若实数、、满足,则称比远离.
(1)若比1远离0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比远离;
(3)已知函数的定义域.任取,等于和中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).
23本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知椭圆的方程为,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;
(2)设直线交椭圆于、两点,交直线于点.若,证明:为的中点;
(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点、满足,写出求作点、的步骤,并求出使、存在的θ的取值范围.
[番茄花园1]22.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com