精英家教网 > 高中数学 > 题目详情

如图,四棱锥的底面是平行四边形,,分别是棱的中点.
(1)证明平面
(2)若二面角P-AD-B为
①证明:平面PBC⊥平面ABCD
②求直线EF与平面PBC所成角的正弦值.
 

(1)详见解析, (2)①详见解析,②

解析试题分析:(1)证明线面平行,一般利用线线平行进行证明.本题条件中的中点较多,所以取PB中点M,利用中位线性质找寻平行条件.因为F为PC中点,故MF//BC且MF=BC.由已知有BC//AD,BC=AD.又由于E为AD中点,因而MF//AE且MF=AE,故四边形AMFE为平行四边形,所以EF//AM,又AM平面PAB,而EF平面PAB,所以EF//平面PAB.,(2)①证明面面垂直,关键在一个面内找出另一平面的垂线.经分析BE平面PBC.这是因为通过计算可得BEPB, 又BC//AD,BEAD,从而BEBC,②求线面角,关键是找面的垂线,由①知BE平面PBC.所以EFB为直线EF与平面PBC所成的角,下面只需分别求出BE与EF的值即可.在三角形ABP中,可求得AM=,故EF=,又BE=1,故在直角三角形EBF中,所以,直线EF与平面PBC所成角的正弦值为
证明(1)如图取PB中点M,连接MF,AM.因为F为PC中点,故MF//BC且MF=BC.由已知有BC//AD,BC=AD.又由于E为AD中点,因而MF//AE且MF=AE,故四边形AMFE为平行四边形,所以EF//AM,又AM平面PAB,而EF平面PAB,所以EF//平面PAB.

(2)①连接PE,BE.因为PA=PD,BA=BD,而E为AD中点,故PEAD,BEAD,所以PEB为二面角P-AD-B的平面角.在三角形PAD中,由,可解得PE=2.在三角形ABD中,由,可解得BE=1.在三角形PEB中,PE="2," BE="1," ,由余弦定理,可解得PB=,从而,即BEPB,又BC//AD,BEAD,从而BEBC,因此BE平面PBC.又BE平面ABCD,所以平面PBC平面ABCD,②连接BF,由①知BE平面PBC.所以EFB为直线EF与平面PBC所成的角,由PB=,PA=,AB=ABP为直角,而MB=PB=,可得AM=,故EF=,又BE=1,故在直角三角形EBF中,所以,直线EF与平面PBC所成角的正弦值为
考点:线面平行判定定理,面面平行判定定理,直线与平面所成的角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.
(1)求证:平面
(2)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中-A BC中,AB  AC,AB=AC=2,=4,点D是BC的中点.
(1)求异面直线所成角的余弦值;
(2)求平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.

(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(1)求证:AB1⊥面A1BD;
(2)求二面角A-A1D-B的余弦值;
(3)求点C到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体中,
(1)若点在对角线上移动,求证:
(2)当为棱中点时,求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱柱的侧棱与底面垂直,且,点分别为的中点.
(1)求证:平面
(2)求证:
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四边形ACFE是矩形,且平面平面ABCD,点M在线段EF上.
(1)求证:平面ACFE;
(2)当EM为何值时,AM//平面BDF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧棱垂直于底面,分别为的中点.
(1)求证:平面平面
(2)求证:平面
(3)求三棱锥的体积.

查看答案和解析>>

同步练习册答案