精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱-的底面是边长为2的等边三角形,底面,点分别是棱上的点,且

(Ⅰ)证明:平面平面

(II)若,求直线与平面所成角的正弦值.

【答案】(Ⅰ)证明过程见解析;(Ⅱ) .

【解析】试题(1)取中点,连接,则,进而证的平面,在取的中点,连接,则,从而证得平面,进而证的结论;

2)以为原点,分别为轴,轴建立如图所示的空间直角坐标系,求得向量和平面的法向量,即可利用向量的运算得到直线与平面所成角的正弦值。

试题解析:

)证明:取中点,连接,则

因为底面,所以侧面底面

所以平面

中点,连接,则,且

又因为,所以

所以,所以四边形是平行四边形,

所以,所以平面.又平面

所以平面平面

)以为原点,分别为轴,轴建立如图所示的空间直角坐标系,因为,依题意得,所以

设平面的一个法向量为

,得

设直线与平面所成的角为,则

故直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】自新型冠状病毒疫情爆发以来,人们时刻关注疫情,特别是治愈率,治愈率累计治愈人数/累计确诊人数,治愈率的高低是战役的重要数据,由于确诊和治愈人数在不断变化,那么人们就非常关心第天的治愈率,以此与之前的治愈率比较,来推断在这次战役中是否有了更加有效的手段,下面是一段计算治愈率的程序框图,请同学们选出正确的选项,分别填入①②两处,完成程序框图.

:第天新增确诊人数;:第天新增治愈人数;:第天治愈率

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图正方形AMDE的边长为2BC分别为AMMD的中点在五棱锥PABCDEF为棱PE的中点平面ABF与棱PDPC分别交于点GH.

(1)求证ABFG

(2)PA⊥底面ABCDEPAAE.求直线BC与平面ABF所成角的大小并求线段PH的长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,折线图和条形图分别为某位职员2018年与2019年的家庭总收入各种用途所占比例的统计图,已知2018年的家庭总收入为10万元,2019年的储蓄总量比2018年的储蓄总量减少了10%,则下列说法:

2019年家庭总收入比2018年增长了8%

②年衣食住的总费用与2018年衣食住的总费相同;

2019年的旅行总费用比2018年增加了2800元;

2019年的就医总费用比2018年增长了5%

其中正确的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据国家统计局发布的数据,201911月全国CPI(居民消费价格指数),同比上涨4.5%CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是201911CPI一篮子商品权重,根据该图,下列结论错误的是(

A.CPI一篮子商品中所占权重最大的是居住

B.CPI一篮子商品中吃穿住所占权重超过50%

C.猪肉在CPI一篮子商品中所占权重约为2.5%

D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,的中点,现将折起,使得平面及平面都与平面垂直.

1)求证:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出曲线的直角坐标方程,并求时直线的普通方程;

2)直线和曲线交于两点,点的直角坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域内有两个不同的极值点.

1)求实数的取值范围;

2)设两个极值点分别为证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案