精英家教网 > 高中数学 > 题目详情
f1(x)=sin(
2
+x)cosx
,f2(x)=sinxsin(π+x),若设f(x)=f1(x)-f2(x),则f(x)的单调递增区间是
 
考点:运用诱导公式化简求值,正弦函数的单调性
专题:三角函数的图像与性质
分析:化简函数的解析式为f(x)=-cos2x,本题即求函数y=cos2x的减区间.令2kπ≤2x≤2kπ+π,k∈z,求得x的范围,可得函数y=cos2x的减区间.
解答: 解:f(x)=f1(x)-f2(x)=sin(
2
+x)cosx-sinxsin(π+x)=-cos2x+sin2x=-cos2x,
故本题即求函数y=cos2x的减区间.
令2kπ≤2x≤2kπ+π,k∈z,求得kπ≤x≤kπ+
π
2

可得函数y=cos2x的减区间为 [kπ,kπ+
π
2
](k∈Z)

故答案为:[kπ,kπ+
π
2
](k∈Z)
点评:本题主要考查利用诱导公式进行化简求值,余弦函数的单调性,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

x2sinα-y2cosα=1(0≤α<2π)表示双曲线,则α的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数 f(x)=
4-x
x-1
+log2(x+2)的定义域是(  )
A、(-2,1)∪(1,4]
B、[-2,1)∪(1,4]
C、(-2,4)
D、(0,1)∪(1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|kπ+
π
3
≤x<kπ+π,k∈Z},B={y|y=-x2-2x+4.x∈R},C={y|y=2x-4},则A∩B∩C
 
用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2
5
b
=(1,2),且
a
b
,则
a
的坐标为(  )
A、(2,4)
B、(-2,-4)
C、(2,4)或(-2,-4)
D、(2,-4)或(-2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

若sinθ•cosθ=
1
2
,则下列结论中一定成立的是(  )
A、sinθ=
2
2
B、sinθ=-
2
2
C、sinθ+cosθ=1
D、sinθ-cosθ=0

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合M={x|x<3},N={x|log2x>1},则M∩N=(  )
A、R
B、{x|0<x<3}
C、{x|1<x<3}
D、{x|2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
1
5
,α∈(0,π),则sin2α=(  )
A、-
24
25
B、
12
25
C、-
4
3
或-
3
4
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是∠A,∠B,∠C所对的边,a+c=2b,A-C=
3
.求sinB的值.

查看答案和解析>>

同步练习册答案