精英家教网 > 高中数学 > 题目详情
9.在等比数列{an}中,a4=2,a5=5,则lga1+lga2+…+lga8等于4.

分析 由等比数列{an}的性质可得,a4•a5=10=a1a8=a2a7=a3a6,再利用对数的运算性质即可得出.

解答 解:由等比数列{an}的性质可得,a4•a5=10=a1a8=a2a7=a3a6
则lga1+lga2+…+lga8=lg(a1a2•…•a8)=lg104=4.
故答案为:4.

点评 本题考查了等比数列的性质、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数$y=2sin(2ωx-\frac{π}{3})$周期是π,则ω2等于(  )
A.1B.$\frac{1}{2}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知等差数列{an}的首项a1=1,前五项之和S5=25,则{an}的通项an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知平行四边形ABCD中,AB=2,AD=1,∠DAB=60°,点E,F分别在线段BC,DC上运动,设$\overrightarrow{BE}=λ\overrightarrow{BC},\overrightarrow{DF}=\frac{1}{9λ}\overrightarrow{DC}$,则$\overrightarrow{AE}•\overrightarrow{AF}$的最小值是$\frac{22}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知幂函数f(x)=(t3-t+1)x${\;}^{2+2t-{t}^{2}}$是奇函数,且在(0,+∞)上是增函数.
(1)求函数f(x)的解析式;
(2)已知函数g(x)=f(x)-4$\sqrt{f(x)}$,x∈[1,4],求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和为Sn.已知$2{S_n}={3^n}+3$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}满足anbn=log3an,{bn}的前n项和Tn
①求Tn
②若P<Tn<Q对于n∈N*恒成立,求P与Q的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|3<x<6},B={x|2<x<9},
(Ⅰ)求A∩B,(∁RA)∪(∁RB),
(Ⅱ)已知C={x|a<x<a+1},若B∪C=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题错误的个数(  )
①“在三角形ABC中,若sinA>sinB,则A>B”的逆命题是真命题;
②命题p:x≠2或y≠3,命题q:x+y≠5,则p是q的必要不充分条件;
③命题“若a2+b2=0,则a,b都是0”的否命题是“若a2+b2≠0,则a,b都不是0”.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.m为何值时,方程mx2-(2m+1)x+m=0有两个不相等的实数解?

查看答案和解析>>

同步练习册答案