精英家教网 > 高中数学 > 题目详情

【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔,唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史.某陶瓷厂在生产过程中,对仿制的100件工艺品测得其重量(单位;kg)数据,将数据分组如下表:

(1)在答题卡上完成频率分布表;

(2)重量落在中的频率及重量小于2.45的频率是多少?

(3)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是作为代表.据此,估计这100个数据的平均值.

【答案】(1)答案见解析;(2)0.94,0.45;(3)2.47.

【解析】试题分析:

(1)由题意可得区间之间的频数为,据此计算即可完成频率分布表;

(2)结合(1)中的频率分布表计算可得重量落在中的频率为0.94,重量小于2.45的频率是0.45

(3)用该组区间的中点值作为代表计算可得这100个数据的平均值为2.47.

试题解析:

(1)

分组

合计

频数

4

26

30

28

10

2

100

频率

0.04

0.26

0.30

0.28

0.10

0.02

1.0

(2)重量落在中的频率为

重量小于2.45的频率为

(3)这100个数据的平均值约为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|x2﹣x﹣6≤0}, ,那么集合A∩(UB)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合由满足以下性质的函数组成:①上是增函数;②对于任意的 .已知函数 .

(1)试判断 是否属于集合,并说明理由;

(2)将(1)中你认为属于集合的函数记为.

(ⅰ)试用列举法表示集合

(ⅱ)若函数在区间上的值域为,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了绿化城市,要在矩形区域ABCD内建一个矩形草坪,如图所示,另外,△AEF内部有一文物保护区不能占用,经测量AB=100 m,BC=80 m,AE=30 m,AF=20 m,应如何设计才能使草坪面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照,…,分成8组,制成了如图1所示的频率分布直方图.

(图1) (图2)

Ⅰ)通过频率分布直方图,估计该市居民每月的用水量的平均数和中位数(精确到0.01);

求用户用水费用(元)关于月用水量(吨)的函数关系式;

Ⅲ)如图2是该县居民李某20171~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是.若李某20171~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】浦东新区某镇投入资金进行生态环境建设,2017年度计划投入800万元,以后每年投入将比上一年减少 ,今年该镇旅游收入估计500万元,由于该项建设对旅游的促进作用,预计今后的旅游收入每年会比上一年增加
(1)设n年内(今年为第一年)总投入为an万元,旅游总收入为bn万元,写出an , bn的表达式;
(2)至少经过几年,旅游业的总收入才能超过总投入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】相传古代印度国王在奖赏他聪明能干的宰相达依尔(国际象棋发明者),问他需要什么,达依尔说:“国王只要在国际象棋棋盘的第一格子上放一粒麦子,第二格子上放二粒,第三格子上放四粒,以后按比例每一格加一倍,一直放到第64(国际象棋棋盘格数是8×8=64),我就感恩不尽,其他什么也不要了.国王想:“这才有多少,还不容易!”于是让人扛来一袋小麦,但不到一会儿就用完了,再来一袋很快又没有了,结果全印度的粮食用完还不够,国王很奇怪,怎么也算不清这笔账.请你设计一个程序框图表示其算法,来帮国王计算一下需要多少粒小麦.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程x2+mx+1=0有两个不相等的实根;
命题q:函数f(x)=lg[x2﹣2(m+1)x+m(m+1)]的定义域为R,
若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx.
(1)求f(x)的单调区间和极值;
(2)设A(x1 , f(x1)),B(x2 , f(x2)),且x1≠x2 , 证明: <f′( ).

查看答案和解析>>

同步练习册答案