精英家教网 > 高中数学 > 题目详情

已知圆O:,点P是椭圆C:上一点,过点P作圆O的两条切线PA、PB,A、B为切点,直线AB分别交轴、轴于点M、N,则的面积的最小值是

A.          B.1             C.         D.

 

【答案】

A

【解析】令,由切线公式可得直线PA:,直线PB:,所以P满足,所以可得直线AB的方程为

①.由①式得,所以OMN面积

带入②得则,所以当sin2β=1时面积最小,

此时Smin=.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4+2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=
4
3
上动点P(x0,y0)(x0-y0≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1,F2为椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率e=
3
2
S△DEF2=1-
3
2
.若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)称为点M的一个“椭点”.直线l与椭圆交于A,B两点,A,B两点的“椭点”分别为P,Q,已知以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的标准方程;
(2)△AOB的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省本溪一中高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

已知椭C:+=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=上动点P(x,y)(x-y≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省本溪一中高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

已知椭C:+=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=上动点P(x,y)(x-y≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省荆州市公安三中高三(上)数学积累测试卷11(解析版) 题型:解答题

已知椭C:+=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=上动点P(x,y)(x-y≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.

查看答案和解析>>

同步练习册答案