【题目】已知椭圆的方程为,圆与轴相切于点,与轴正半轴相交于、两点,且,如图1.
(1)求圆的方程;
(2)如图1,过点的直线与椭圆相交于、两点,求证:射线平分;
(3)如图2所示,点、是椭圆的两个顶点,且第三象限的动点在椭圆上,若直线与轴交于点,直线与轴交于点,试问:四边形的面积是否为定值?若是,请求出这个定值,若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】某高速公路隧道设计为单向三车道,每条车道宽4米,要求通行车辆限高5米,隧道全长1.5千米,隧道的断面轮廓线近似地看成半个椭圆形状(如图所示).
(1)若最大拱高为6米,则隧道设计的拱宽至少是多少米?(结果取整数)
(2)如何设计拱高和拱宽,才能使半个椭圆形隧道的土方工程量最小?(结果取整数)
参考数据:,椭圆的面积公式为,其中,分别为椭圆的长半轴和短半轴长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—5:参数方程选讲]
在直角坐标系xoy中,曲线的参数方程是(t是参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程是
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若两曲线交点为A、B,求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机器生产商,对一次性购买两台机器的客户推出两种超过质保期后两年内的延保维修方案:
方案一:交纳延保金元,在延保的两年内可免费维修次,超过次每次收取维修费元;
方案二:交纳延保金元,在延保的两年内可免费维修次,超过次每次收取维修费元.
某工厂准备一次性购买两台这种机器,现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了台这种机器超过质保期后延保两年内维修的次数,统计得下表:
维修次数 | 0 | 1 | 2 | 3 |
机器台数 | 20 | 10 | 40 | 30 |
以上台机器维修次数的频率代替一台机器维修次数发生的概率,记表示这两台机器超过质保期后延保两年内共需维修的次数.
求的分布列;
以所需延保金与维修费用之和的期望值为决策依据,该工厂选择哪种延保方案更合算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数(,,,)在区间上的图象,为了得到这个函数的图象,只需将()的图象上的所有的点( )
A. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变
B. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变
C. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变
D. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的焦距为,点在椭圆上,且的最小值是(为坐标原点).
(1)求椭圆的标准方程.
(2)已知动直线与圆:相切,且与椭圆交于,两点.是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com