【题目】在四棱锥中,底面是边长为2的菱形,是的中点.
(1)证明:平面;
(2)设是直线上的动点,当点到平面距离最大时,求面与面所成二面角的正弦值.
【答案】(1)证明见解析(2)
【解析】
(1)取中点,连接,根据菱形的性质,结合线面垂直的判定定理和性质进行证明即可;
(2)根据面面垂直的判定定理和性质定理,可以确定点到直线的距离即为点到平面的距离,结合垂线段的性质可以确定点到平面的距离最大,最大值为1.
以为坐标原点,直线分别为轴建立空间直角坐标系.利用空间向量夹角公式,结合同角的三角函数关系式进行求解即可.
(1)证明:取中点,连接,
因为四边形为菱形且.
所以,
因为,所以,
又,
所以平面,因为平面,
所以.
同理可证,
因为,
所以平面.
(2)解:由(1)得平面,
所以平面平面,平面平面.
所以点到直线的距离即为点到平面的距离.
过作的垂线段,在所有的垂线段中长度最大的为,此时必过的中点,
因为为中点,所以此时,点到平面的距离最大,最大值为1.
以为坐标原点,直线分别为轴建立空间直角坐标系.
则
所以
平面的一个法向量为,
设平面的法向量为,
则即
取,则,
,
所以,
所以面与面所成二面角的正弦值为.
科目:高中数学 来源: 题型:
【题目】物业公司为了改善某小区空气质量和居住环境,计划将小区内部的空地种植绿植,平时许多用户将私家车停在空地上,为了了解该小区居民对种植绿植的态度,在该小区中随机抽查了100人进行了调查,调查情况如下表:
年龄段 | ||||||
频数 | 5 | 15 | 20 | 20 | 10 | |
赞成人数 | 3 | 12 | 17 | 18 | 16 | 2 |
(1)求出表格中的值,并完成被调查人员年龄的频率分布图.
(2)若从年龄在被调查者中按照是否赞成进行分层抽样,从中抽取5人参与某项调查,然后再从这5人中随机抽取2人参加座谈会,求选出的2人中至少有1人赞成“种植绿植”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新高考取消文理科,实行“”模式,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人,并把调查结果制成下表:
年龄(岁) | ||||||
频数 | 5 | 15 | 10 | 10 | 5 | 5 |
了解 | 4 | 12 | 6 | 5 | 2 | 1 |
(1)把年龄在称为中青年,年龄在称为中老年,请根据上表完成列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?
了解新高考 | 不了解新高考 | 总计 | |
中青年 | |||
中老年 | |||
总计 |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线和曲线交于A,B两点(点A在第二象限).过A作斜率为的直线交曲线M于点C(不同于点A),过点作斜率为的直线交曲线于E,F两点,且.
(I)求的取值范围;
(Ⅱ)设的面积为S,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有如下命题,其中真命题的标号为( )
A.若幂函数的图象过点,则
B.函数(,且)的图象恒过定点
C.函数有两个零点
D.若函数在区间上的最大值为4,最小值为3,则实数m的取值范围是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=|lnx|,若函数g(x)=f(x)-ax在区间(0,4)上有三个零点,则实数a的取值范围是( )
A. (0,)B. (,e)C. (,)D. (0,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为等差数列,各项为正的等比数列的前项和为,,,__________.在①;②;③这三个条件中任选其中一个,补充在横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答记分).
(1)求数列和的通项公式;
(2)求数列的前项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com