【题目】如图,三棱柱的所有棱长都是2,平面ABC,D,E分别是AC,的中点.
(1)求证:;
(2)求二面角的余弦值.
【答案】(1)见证明;(2)
【解析】
(1)利用线面垂直的判定和性质,得到平面,进而证得;
(2)建立空间直角坐标系,求面DBE和面的法向量,利用向量的夹角公式,即可求得二面角的余弦值.
(1)∵,D是AC的中点,∴,
∵平面ABC,∴平面平面ABC,
∴平面,∴.
又∵在正方形中,D,E分别是AC,的中点,易证得∴△A1AD≌△ACE
∴∠A1DA=∠AEC, ∵∠AEC+∠CAE=90°,∴∠A1DA+∠CAE=90° ,即.
又,∴平面.
又,则
(2)取中点F,以DF,DA,DB为x,y,z轴建立空间直角坐标系
,,,,,
,,
设平面DBE的一个法向量为,
则,
令,则,
设平面的一个法向量为,
则,
令,则,
设二面角的平面角为,观察可知为锐角,
故二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的33表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X元.
(1)求概率;
(2)求的概率分布及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们学校是一所有着悠久传统文化的学校,我们学校全名叫重庆外国语学校(Chongqing Foreign Language School),又名四川外国语大学附属外国语学校,简称“重外”,1981年,被定为四川省首批办好的重点中学;1997年,被列为重庆市教委首批办好的直属重点中学之一;2001年被国家教育部指定为20%高三学生享有保送资格的全国十三所学校之一,今年我校保送取得了非常辉煌的成绩,目前为止,包括清华大学,北京大学在内目前共保送122名同学,其中北京大学,南开大学,北京外国语大学保送的人数成公差为正数的等差数列,三个学校保送人数之和为24人,三个学校保送学生人数之积为312,则北京外国语大学保送的人数为(以上数据均来自于学校官网)( )
A.10B.11C.13D.14
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(是参数),
(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;
(Ⅱ)设曲线经过伸缩变换得到曲线,曲线任一点为,求点直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是以为直径的圆上一段圆弧,是以为直径的圆上一段圆弧,是以为直径的圆上一段圆弧,三段弧构成曲线.则下面说法正确的是( )
A.曲线与轴围成的面积等于
B.与的公切线方程为:
C.所在圆与所在圆的交点弦方程为:
D.用直线截所在的圆,所得的弦长为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线与圆O:相切.
(1)直线l过点(2,1)且截圆O所得的弦长为,求直线l的方程;
(2)已知直线y=3与圆O交于A,B两点,P是圆上异于A,B的任意一点,且直线AP,BP与y轴相交于M,N点.判断点M、N的纵坐标之积是否为定值?若是,求出该定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为)作为样本(样本容量)进行统计,按照、、、、的分组作出频率分布直方图,已知得分在、的频数分别为、.
(1)求样本容量和频率分布直方图中的、的值;
(2)估计本次竞赛学生成绩的众数、中位数、平均数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com