精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,曲线C的极坐标方程为.以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 (t为参数)

(1)若,求曲线C的直角坐标方程以及直线l的极坐标方程;

(2)设点,曲线C与直线 交于A、B两点,求的最小值

【答案】(1);(2)14

【解析】

1)根据直接利用转换关系可得曲线C的直角坐标方程,将代入结合可得直线的极坐标;(2)将直线方程代入曲线中,利用一元二次方程根和系数的关系以及参数的几何意义即可求出结果.

(1)曲线C:,将.代入得

即曲线C的直角坐标方程为.

直线l: (t为参数),所以

故直线l的极坐标方程为.

(2)联立直线l与曲线C的方程得

设点AB对应的参数分别为t1t2,则

因为

时取等号,所以的最小值为14.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的零点个数;

2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市正在进行创建全国文明城市的复验工作,为了解市民对“创建全国文明城市”的知识知晓程度,某权威调查机构对市民进行随机调查,并对调查结果进行统计,共分为优秀和一般两类,先从结果中随机抽取100份,统计得出如下列联表:

优秀

一般

总计

25

25

50

30

20

50

总计

55

45

100

1)根据上述列联表,是否有的把握认为“创城知识的知晓程度是否为优秀与性别有关”?

2)现从调查结果为一般的市民中,按分层抽样的方法从中抽取9人,然后再从这9人中随机抽取3人,求这三位市民中男女都有的概率;

3)以样本估计总体,视样本频率为概率,从全市市民中随机抽取10人,用表示这10人中优秀的人数,求随机变量的期望和方差.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设矩阵M (其中a>0,b>0).

(1)若a=2,b=3,求矩阵M的逆矩阵M-1

(2)若曲线Cx2y2=1在矩阵M所对应的线性变换作用下得到曲线C′:y2=1,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线C)的焦点F在直线上,平行于x轴的两条直线分别交抛物线CAB两点,交该抛物线的准线于DE两点.

1)求抛物线C的方程;

2)若F在线段上,P的中点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点坐标为分别是椭圆的左,右顶点,是椭圆上异于的一点,且所在直线斜率之积为.

1)求椭圆的方程;

2)过点作两条直线,分别交椭圆两点(异于点).当直线的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】互联网+”时代的今天,移动互联快速发展,智能手机(Smartphone)技术不断成熟,尤其在5G领域,华为更以件专利数排名世界第一,打破了以往由美、英、日垄断的前三位置,再次荣耀世界,而华为的价格却不断下降,远低于苹果;智能手机成为了生活中必不可少的工具,学生是对新事物和新潮流反应最快的一个群体之一,越来越多的学生在学校里使用手机,为了解手机在学生中的使用情况,对某学校高二年级名同学使用手机的情况进行调查,针对调查中获得的每天平均使用手机进行娱乐活动的时间进行分组整理得到如下的数据:

使用时间(小时)

1

2

3

4

5

6

7

所占比例

4%

10%

31%

16%

12%

2%

1)求表中的值;

2)从该学校随机选取一名同学,能否根据题目中所给信息估计出这名学生每天平均使用手机进行娱乐活动小于小时的概率?若能,请算出这个概率;若不能,请说明理由;

3)若从使用手机小时和小时的两组中任取两人,调查问卷,看看他们对使用手机进行娱乐活动的看法,求这人都使用小时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.

1)求一件手工艺品质量为B级的概率;

2)若一件手工艺品质量为ABC级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100.

①求10件手工艺品中不能外销的手工艺品最有可能是多少件;

②记1件手工艺品的利润为X元,求X的分布列与期望.

查看答案和解析>>

同步练习册答案