精英家教网 > 高中数学 > 题目详情

【题目】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立

(1)记20件产品中恰有2件不合格品的概率为,的最大值点

(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用

(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;

(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

【答案】(1).

(2) (i)490.

(ii)应该对余下的产品作检验.

【解析】分析:(1)利用独立重复实验成功次数对应的概率,求得之后对其求导,利用导数在相应区间上的符号,确定其单调性,从而得到其最大值点,这里要注意的条件;

(2)先根据第一问的条件,确定出,在解(i)的时候,先求件数对应的期望,之后应用变量之间的关系,求得赔偿费用的期望;在解(ii)的时候,就通过比较两个期望的大小,得到结果.

详解:(1)20件产品中恰有2件不合格品的概率为.因此

.

,得.时,;当时,.

所以的最大值点为.

(2)由(1)知,.

(i)令表示余下的180件产品中的不合格品件数,依题意知,即.

所以.

(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400.

由于,故应该对余下的产品作检验.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为提高员工的综合素质,聘请专业机构对员工进行专业技术培训,其中培训机构费用成本为12000元.公司每位员工的培训费用按以下方式与该机构结算:若公司参加培训的员工人数不超过30人时,每人的培训费用为850元;若公司参加培训的员工人数多于30人,则给予优惠:每多一人,培训费减少10元.已知该公司最多有60位员工可参加培训,设参加培训的员工人数为人,每位员工的培训费为元,培训机构的利润为元.

(1)写出 之间的函数关系式;

(2)当公司参加培训的员工为多少人时,培训机构可获得最大利润?并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()

(结果精确到0.1.参考数据:lg20.3010lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a3+a4+a5=84,a9=73.
(1)求数列{an}的通项公式;
(2)对任意m∈N* , 将数列{an}中落入区间(9m , 92m)内的项的个数记为bm , 求数列{bm}的前m项和Sm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.

(1)9∈(AB);(2){9}=AB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】p:实数x满足x2-5ax+4a2<0(其中a>0),q:实数x满足2<x≤5.

(1)若a=1,且pq为真,求实数x的取值范围;

(2)若qp的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须整改.若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8.计算(结果精确到0.01):

(1)恰好有两家煤矿必须整改的概率.

(2)平均有多少家煤矿必须整改?

(3)至少关闭一家煤矿的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的xy,有f(1)2,.

1)求f(0)的值;

2)求证:对任意x,都有f(x)>0

3)解不等式f(32x)>4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某算法的程序框图,则程序运行后输出的结果是

查看答案和解析>>

同步练习册答案