精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的方程为.以坐标原点为极点, 轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出曲线的参数方程和曲线的直角坐标方程;

(2)设点在曲线上,点在曲线上,求的最大值.

【答案】(1)的参数方程为 (为参数), 的直角坐标方程为;(2)

【解析】试题分析:

()利用极坐标与直角坐标、参数方程与直角坐标方程的转化关系可得曲线的参数方程为为参数),的直角坐标方程为.

()曲线是以 为圆心, 为半径的圆.设出点的的坐标,结合题意得到三角函数式: .结合二次型复合函数的性质可得.

试题解析:

Ⅰ)曲线的参数方程为为参数),

的直角坐标方程为,即.

Ⅱ)由(Ⅰ)知,曲线是以 为圆心, 为半径的圆.

.

时, 取得最大值.

又因为,当且仅当三点共线,且在线段上时,等号成立.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.

(个)

2

3

4

5

6

(百万元)

2.5

3

4

4.5

6

(1)该公司已经过初步判断,可用线性回归模型拟合的关系,求关于的线性回归方程

(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分时,才能使区平均每个分店的年利润最大?

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点及椭圆过点的动直线与椭圆相交于 两点.

1)若线段中点的横坐标是求直线的方程;

(2)设点的坐标为求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的首项为a,公差为b,方程ax2-3x+2=0的解为1和b

(1)求数列{an}的通项公式;

(2)若数列{bn}满足bnan·2n,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(1)当时,求函数在点处的切线方程;

(2)若函数有两个零点,试求的取值范围;

(3)证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图. 图中A点表示十月的平均最高气温约为,B点表示四月的平均最低气温约为. 下面叙述不正确的是 ( )

A. 各月的平均最低气温都在以上

B. 七月的平均温差比一月的平均温差大

C. 三月和十一月的平均最高气温基本相同

D. 平均最高气温高于的月份有5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体中,四边形为平行四边形, 平面,且 .

(Ⅰ)求证:平面平面

(Ⅱ)若直线与平面所成的角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面,三角形为等边三角形, ,且

1)求证: 平面

2)求证:平面平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为,第二次朝下面的数字为.表示一个基本事件.

请写出所有基本事件;

求满足条件“”为整数的事件的概率;

求满足条件“”的事件的概率.

查看答案和解析>>

同步练习册答案