【题目】下列各组函数是同一函数的是( )
A.与B.与
C.与D.与
科目:高中数学 来源: 题型:
【题目】已知f(x)=logax(a>0,a≠1),设数列f(a1),f(a2),f(a3),…,f(an)…是首项为4,公差为2的等差数列.
(I)设a为常数,求证:{an}成等比数列;
(II)设bn=anf(an),数列{bn}前n项和是Sn , 当时,求Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,满足,数列满足.
(1)求数列、的通项公式;
(2),求数列的前项和;
(3)对任意的正整数,是否存在正整数,使得?若存在,请求出的所有值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面AA1B1B⊥底面ABC,△ABC和△ABB1都是边长为2的正三角形.
(Ⅰ)过B1作出三棱柱的截面,使截面垂直于AB,并证明;
(Ⅱ)求AC1与平面BCC1B1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某机械厂欲从米,米的矩形铁皮中裁剪出一个四边形加工成某仪器的零件,裁剪要求如下:点分别在边上,且,.设,四边形的面积为(单位:平方米).
(1)求关于的函数关系式,求出定义域;
(2)当的长为何值时,裁剪出的四边形的面积最小,并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则x天后的存留量;若在t(t>4)天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存留量y2随时间变化的曲线恰为直线的一部分,其斜率为(a<0),存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”.
(1)若a=-1,t=5求“二次复习最佳时机点”;
(2)若出现了“二次复习最佳时机点”,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某公司为郑州园博园生产某特许商品,该公司年固定成本为10万元,每生产千件需另投入2 .7万元,设该公司年内共生产该特许商品工x千件并全部销售完;每千件的销售收入为R(x)万元,
且,
(I)写出年利润W(万元〉关于该特许商品x(千件)的函数解析式;
〔II〕年产量为多少千件时,该公司在该特许商品的生产中所获年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , Sn=2an﹣1,{bn}是等差数列,且b1=a1 , b4=a3 .
(1)求数列{an}和{bn}的通项公式;
(2)若 ,求数列{cn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com