精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,直线y= x为曲线y=f(x)的切线(e为自然对数的底数).
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣ }(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.

【答案】
(1)解:函数f(x)= 的导数为f′(x)=

设切点为(m,n),即有n= ,n= m,

可得ame=em,①

由直线y= x为曲线y=f(x)的切线,可得

= ,②

由①②解得m=1,a=1;


(2)解:函数g(x)=min{f(x),x﹣ }(x>0),

由f(x)= 的导数为f′(x)=

当0<x<2时,f(x)递增,x>2时,f(x)递减.

对x﹣ 在x>0递增,设y=f(x)和y=x﹣ 的交点为(x0,y0),

由f(1)﹣(1﹣1)= >0,f(2)﹣(2﹣ )= <0,即有1<x0<2,

当0<x<x0时,g(x)=x﹣

h(x)=g(x)﹣cx2=x﹣ ﹣cx2,h′(x)=1+ ﹣2cx,

由题意可得h′(x)≥0在0<x<x0时恒成立,

即有2c≤ + ,由y= + 在(0,x0)递减,

可得2c≤ +

当x≥x0时,g(x)=

h(x)=g(x)﹣cx2= ﹣cx2,h′(x)= ﹣2cx,

由题意可得h′(x)≥0在x≥x0时恒成立,

即有2c≤ ,由y= ,可得y′=

可得函数y在(3,+∞)递增;在(x0,3)递减,

即有x=3处取得极小值,且为最小值﹣

可得2c≤﹣ ②,

由①②可得2c≤﹣ ,解得c≤﹣


【解析】(1)求出f(x)的导数,设出切点(m,n),可得切线的斜率,由切线方程可得a,m的方程,解方程可得a=1;(2)y=f(x)和y=x﹣ 的交点为(x0 , y0),分别画出y=f(x)和y=x﹣ 在x>0的图象,可得1<x0<2,再由新定义求得最小值,求得h(x)的解析式,由题意可得h′(x)≥0在0<x<x0时恒成立,运用参数分离和函数的单调性,即可得到所求c的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲,乙两人进行围棋比赛,共比赛2n(n∈N+)局,根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为 .如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n).
(1)求P(2)与P(3)的值;
(2)试比较P(n)与P(n+1)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,AB=2,CD=4,BC= ,点E,F分别为AD,BC的中点.如果对于常数λ,在ABCD的四条边上,有且只有8个不同的点P使得 =λ成立,那么实数λ的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非空集合M满足M{0,1,2,…,n}(n≥2,n∈N+).若存在非负整数k(k≤n),使得当a∈M时,均有2k﹣a∈M,则称集合M具有性质P.设具有性质P的集合M的个数为f(n).
(1)求f(2)的值;
(2)求f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,以原点O为顶点,以y轴为对称轴的抛物线E的焦点为F(0,1),点M是直线l:y=m(m<0)上任意一点,过点M引抛物线E的两条切线分别交x轴于点S,T,切点分别为B,A.

(1)求抛物线E的方程;

(2)求证:点S,T在以FM为直径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A,B,C的对边分别是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求证:△ABC为等腰三角形
(2)若△ABC的面积为8 .且sinB= ,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得=80, =20, =184, =720.

(1)求家庭的月储蓄y对月收入x的线性回归方程ybxa

(2)判断变量xy之间是正相关还是负相关;

(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

附:线性回归方程ybxa中, ab,其中 为样本平均值.

查看答案和解析>>

同步练习册答案