精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= sinωx﹣ cosωx(ω<0),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,记ω的最大值为ω0 , 函数g(x)=cos(ω0x﹣ )的单调递增区间为(
A.[﹣ π+ ,﹣ + ](k∈Z)
B.[﹣ + + ](k∈Z)
C.[﹣ π+2kπ,﹣ +2kπ](k∈Z)
D.[﹣ +2kπ,﹣ +2kπ](k∈Z)

【答案】A
【解析】解:函数f(x)= sinωx﹣ cosωx(ω<0)=2sin(ωx﹣ ), 若y=f(x+ )的图象与y=f(x﹣ )的图象重合,
为函数f(x)的周期,即 =k| |,∴ω=±4k,k∈Z.
记ω的最大值为ω0 , 则ω0=﹣4,
函数g(x)=cos(ω0x﹣ )=cos(﹣4x﹣ )=cos(4k+ ).
令2kπ﹣π≤4x+ ≤2kπ,求得 ≤x≤
故函数g(x)的增区间为[ ],k∈Z.
故选:A.
利用三角恒等变换化简f(x)的解析式,利用正弦函数的周期性求得ω的值,再利用余弦函数的单调性,求得函数g(x)的增区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥 中,底面 为梯形, 底面 .过 作一个平面 使得 平面 .

(1)求平面 将四棱锥 分成两部分几何体的体积之比;
(2)若平面 与平面 之间的距离为 ,求直线 与平面 所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游爱好者计划从3个亚洲国家 和3个欧洲国家 中选择2个国家去旅游.
(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括 但不包括 的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.

组号

分组

频率

1

[160,165)

0.05

2

0.35

3

0.3

4

0.2

5

0.1

合计

1.00

Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;

Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;

试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 的方程为 ,直线 的方程为 ,点 在直线 上,过点 作圆 的切线 ,切点为 .
(1)若点 的坐标为 ,求切线 的方程;
(2)求四边形 面积的最小值;
(3)求证:经过 三点的圆必过定点,并求出所有定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对应的边分别为a,b,c,且 .
(1)求角B的大小;
(2)若b= ,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为调查高一、高二学生周日在家学习用时情况,随机抽取了高一、高二各人,对他们的学习时间进行了统计,分别得到了高一学生学习时间(单位:小时)的频数分布表和高二学生学习时间的频率分布直方图.

高一学生学习时间的频数分布表(学习时间均在区间内):

学习时间

频数

3

1

8

4

2

2

高二学生学习时间的频率分布直方图:

(1)求高二学生学习时间的频率分布直方图中的并根据此频率分布直方图估计该校高二学生学习时间的中位数

(2)利用分层抽样的方法,从高一学生学习时间在的两组里随机抽取再从这人中随机抽取求学习时间在这一组中至少有人被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x),f(0)=-2,且对 ,y R,都有f(x+y)-f(y)=(x+2y+1)x.
(1)求f(x)的表达式;
(2)已知关于x的不等式f(x)-ax+a+1 的解集为A,若A[2,3],求实数a的取值范围;
(3)已知数列{ }中, ,记 ,且数列{ 的前n项和为
求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列直线方程

(1)求过点且与圆相切的直线方程;

(2)一直线经过点,被圆截得的弦长为8,求此弦所在直线方程.

查看答案和解析>>

同步练习册答案