【题目】以下命题中,正确命题的序号是 . ①函数y=tanx在定义域内是增函数;
②函数y=2sin(2x+ )的图象关于x= 成轴对称;
③已知 =(3,4), =﹣2,则向量 在向量 的方向上的投影是﹣
④如果函数f(x)=ax2﹣2x﹣3在区间(﹣∞,4)上是单调递减的,则实数a的取值范围是(0, ].
【答案】②③
【解析】解:函数y=tanx在定义域内不是单调函数,故①错误; 当x= 时,2x+ = ,故函数y=2sin(2x+ )的图象关于x= 成轴对称,故②正确;
∵ =(3,4), =﹣2,则向量 在向量 的方向上的投影是 =﹣ ,故③正确;
如果函数f(x)=ax2﹣2x﹣3在区间(﹣∞,4)上是单调递减的,则f′(x)=2ax﹣2≤0在区间(﹣∞,4)上恒成立,
解得:a∈[0, ].故④错误;
所以答案是:②③
【考点精析】关于本题考查的命题的真假判断与应用,需要了解两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(1)求f(x)+f(1﹣x)的值;
(2)若数列{an}满足an=f(0)+f( )+f( )+…+f( )+f(1)(n∈N*),求数列{an}的通项公式;
(3)若数列{bn}满足bn=2nan , Sn是数列{bn}的前n项和,是否存在正实数k,使不等式knSn>3bn对于一切的n∈N*恒成立?若存在,请求出k的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 且a2=﹣5,S5=﹣20.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求使不等式Sn>an成立的n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且满足an+Sn=2.
(1)求数列{an}的通项公式;
(2)求证数列{an}中不存在三项按原来顺序成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一批材料可以建成80m的围墙,若用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的小矩形(如图所示),且围墙厚度不计,则围成的矩形的最大面积为( )
A.200m2
B.360m2
C.400m2
D.480m2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,离心率为,设直线的斜率是,且与椭圆交于, 两点.
(Ⅰ)求椭圆的标准方程.
(Ⅱ)若直线在轴上的截距是,求实数的取值范围.
(Ⅲ)以为底作等腰三角形,顶点为,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ< )的图象与y轴的交点为(0, ),它的一个对称中心是M( ,0),点M与最近的一条对称轴的距离是 .
(1)求此函数的解析式;
(2)求此函数取得最大值时x的取值集合;
(3)当x∈(0,π)时,求此函数的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某园林公司准备绿化一块半径为200米,圆心角为 的扇形空地(如图的扇形OPQ区域),扇形的内接矩形ABCD为一水池,其余的地方种花,若∠COP=α,矩形ABCD的面积为S(单位:平方米).
(1)试将S表示为关于α的函数,求出该函数的表达式;
(2)角α取何值时,水池的面积 S最大,并求出这个最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com