精英家教网 > 高中数学 > 题目详情

【题目】已知{an}为等差数列,且a3=﹣6,a6=0.
(1)求{an}的通项公式.
(2)若等比数列{bn}满足b1=8,b2=a1+a2+a3 , 求{bn}的前n项和公式.

【答案】
(1)解:∵{an}为等差数列,且a3=﹣6,a6=0,

,解得a1=﹣10,d=2,

∴an=﹣10+(n﹣1)×2=2n﹣12


(2)解:∵等比数列{bn}满足b1=8,b2=a1+a2+a3=﹣10﹣8﹣6=﹣24,

∴q= = =﹣3,

∴{bn}的前n项和公式:

Sn= =2﹣2(﹣3)n


【解析】(1)由已知条件利用等差数列的通项公式求出首项和公差,由此能求出an=2n﹣12.(2)由等比数列{bn}满足b1=8,b2=a1+a2+a3=﹣10﹣8﹣6=﹣24,求出q= = =﹣3,由此能求出{bn}的前n项和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知cosx=﹣ ,x∈(0,π)
(1)求cos(x﹣ )的值;
(2)求sin(2x+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二次不等式ax2+bx+1>0的解集为{x|﹣1<x< },则ab的值为(
A.﹣5
B.5
C.﹣6
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在坐标原点,且与直线相切.

1)求直线被圆所截得的弦的长;

2)过点作两条与圆相切的直线,切点分别为求直线的方程;

3)若与直线垂直的直线与圆交于不同的两点,若为钝角,求直线轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 点(n, )在直线y= x+ 上.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和为Tn , 并求使不等式Tn 对一切n∈N*都成立的最大正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期是

(1)求ω的值;

(2)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a、b、c成等比数列,非零实数x,y分别是a与b,b与c的等差中项.
(1)已知 ①a=1、b=2、c=4,试计算 的值;
②a=﹣1、b= 、c=﹣ ,试计算 的值
(2)试推测 与2的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)设函数,若在区间上单调,求实数的取值范围;

(2)求证: .

查看答案和解析>>

同步练习册答案