精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=奇函数,且

1)求实数p ,q的值.

2)判断函数fx)在上的单调性,并证明.

【答案】1p2q02)见解析

【解析】

1)由题意可得f(﹣x+fx)=0,求得q的值.再由f2,求得p的值.

2)由上可得,fxx),函数fx)在(﹣∞,﹣1)上是增函数,再利用函数的单调性的定义进行证明.

解:(1)由题意可得f(﹣x+fx)=0,即 0,求得 q0

再由f2,解得 p2

综上可得,p2q0

2)由上可得,fxx),函数fx)在(﹣∞,﹣1)上是增函数.

证明:设x1x2<﹣1,则fx1)﹣fx2[x1)﹣(x2]x1x2)().

由题设可得 x1x2)<0x1x21,故有fx1)﹣fx2)<0

故函数fx)在(﹣∞,﹣1)上是增函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列的各项为正数,且.

(1)求的通项公式;

(2)设,求证数列的前项和<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆上一动点,过点轴,垂足为点,中点为

1)当在圆上运动时,求点的轨迹的方程

Ⅱ)过点的直线交于两点,当时,求线段的垂直平分线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,BC边上的高所在直线的方程为x+2y+3=0∠A的平分线所在直线的方程为y=0,若点B的坐标为(﹣1﹣2),分别求点A和点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线的方程为.

(1)若在两坐标轴上的截距相等,求的方程;

(2)若不经过第二象限,求实数的取值范围;

(3)若轴正半轴的交点为,与轴负半轴的交点为,求(为坐标原点)面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知抛物线的顶点为,与轴的交点为,则直线称为抛物线的伴随直线.

(1)求抛物线的伴随直线的表达式;

(2)已知抛物线的伴随直线为,且该抛物线与轴有两个不同的公共点,求的取值范围.

(3)已知,若抛物线的伴随直线为,且该抛物线与线段恰有1个公共点,求的取值范围(直接写出答案即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

2018222日上午,山东省省委、省政府在济南召开山东省全面展开新旧动能转换重大工程动员大会,会议动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.

1:设备改造后样本的频数分布表

质量指标值

频数

4

36

96

28

32

4

(1)完成下面的列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;

设备改造前

设备改造后

合计

合格品

不合格品

合计

(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;

(3)根据市场调查,设备改造后,每生产一件合格品企业可获利180元,一件不合格品亏损 100元,用频率估计概率,则生产1000件产品企业大约能获利多少元?

附:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形是矩形,平面平面.

(1)求证:

(2)求棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若采用随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数:

7327 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根据以上数据估计该运动员射击4次至少击中3次的概率为__________

查看答案和解析>>

同步练习册答案