【题目】求下列不等式的解集:
(1)
(2)
(3)
(4)
【答案】(1);(2);(3);(4)R
【解析】
(1)根据一元二次不等式的解法,求得不等式的解集.
(2)根据一元二次不等式的解法,求得不等式的解集.
(3)根据一元二次不等式的解法,求得不等式的解集.
(4)根据一元二次不等式的解法,求得不等式的解集.
(1)因为,
所以原不等式可化为,即,
两边开平方得,从而可知或,因此或,
所以原不等式的解集为.
(2)因为,
所以原不等式可化为,即,
两边开平方得,从而可知,因此,
所以原不等式的解集为.
(3)原不等式可化为,又因为,所以上述不等式可化为.
注意到只要,上述不等式就成立,所以原不等式的解集为.
(4)原不等式可以化为.因为,
所以原不等式可以化为,即,
不难看出,这个不等式恒成立,即原不等式的解集为R.
科目:高中数学 来源: 题型:
【题目】(1)掷两枚质地均匀的骰子,计算点数和为7的概率;
(2)利用随机模拟的方法,试验120次,计算出现点数和为7的频率;
(3)所得频率与概率相差大吗?为什么会有这种差异?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(理)已知在平面直角坐标系中,直线的参数方程是(为参数),以原点为极点,轴正半轴为极轴建立极坐标,曲线的极坐标方程.
(1)判断直线与曲线的位置关系;
(2)设为曲线上任意一点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商品近一个月内(30天)预计日销量(件)与时间t(天)的关系如图1所示,单价(万元/件)与时间t(天)的函数关系如图2所示,(t为整数)
(1)试写出与的解析式;
(2)求此商品日销售额的最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3是三种不同的颜色,金色1、金色2是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3有且仅有两种相邻,则不同的涂色方案有( )
A.120种B.240种C.144种D.288种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)设g(x)=log4,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为边长为2的菱形,,,面面,点为棱的中点.
(1)在棱上是否存在一点,使得面,并说明理由;
(2)当二面角的余弦值为时,求直线与平面所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如表的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
算得,.见附表:参照附表,得到的正确结论是( )
A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C. 有99%以上的把握认为“爱好该项运动与性别有关”
D. 有99%以上的把握认为“爱好该项运动与性别无关”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com