精英家教网 > 高中数学 > 题目详情

【题目】求下列不等式的解集:

1

2

3

4

【答案】(1);(2);(3);(4)R

【解析】

1)根据一元二次不等式的解法,求得不等式的解集.

2)根据一元二次不等式的解法,求得不等式的解集.

3)根据一元二次不等式的解法,求得不等式的解集.

4)根据一元二次不等式的解法,求得不等式的解集.

1)因为

所以原不等式可化为,即

两边开平方得,从而可知,因此

所以原不等式的解集为

2)因为

所以原不等式可化为,即

两边开平方得,从而可知,因此

所以原不等式的解集为

3)原不等式可化为,又因为,所以上述不等式可化为

注意到只要,上述不等式就成立,所以原不等式的解集为

4)原不等式可以化为.因为

所以原不等式可以化为,即

不难看出,这个不等式恒成立,即原不等式的解集为R

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)掷两枚质地均匀的骰子,计算点数和为7的概率;

2)利用随机模拟的方法,试验120次,计算出现点数和为7的频率;

3)所得频率与概率相差大吗?为什么会有这种差异?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,解不等式

(Ⅱ)若不等式至少有一个负数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(理)已知在平面直角坐标系中,直线的参数方程是为参数),以原点为极点,轴正半轴为极轴建立极坐标,曲线的极坐标方程.

(1)判断直线与曲线的位置关系;

(2)设为曲线上任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品近一个月内(30天)预计日销量(件)与时间t()的关系如图1所示,单价(万元/件)与时间t()的函数关系如图2所示,(t为整数)

1)试写出的解析式;

2)求此商品日销售额的最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3是三种不同的颜色,金色1、金色2是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3有且仅有两种相邻,则不同的涂色方案有(  )

A.120种B.240种C.144种D.288种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)log4(4x1)kx(k∈R)是偶函数.

(1)k的值;

(2)g(x)log4,若函数f(x)g(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为边长为2的菱形,,面,点为棱的中点.

(1)在棱上是否存在一点,使得,并说明理由;

(2)当二面角的余弦值为时,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如表的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

0.050

0.010

0.001

k

3.841

6.635

10.828

算得,.见附表:参照附表,得到的正确结论是(  )

A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”

B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”

C. 有99%以上的把握认为“爱好该项运动与性别有关”

D. 有99%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

同步练习册答案