精英家教网 > 高中数学 > 题目详情
已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.
(1)求数列{an}的通项公式an
(2)若数列{bn}是等差数列,且bn=
Sn
n+c
,求非零常数c.
(1)an为等差数列,a3•a4=117,a2+a5=22
又a2+a5=a3+a4=22
∴a3,a4是方程x2-22x+117=0的两个根,d>0
∴a3=9,a4=13
a1+2d=9
a1+3d=13

∴d=4,a1=1
∴an=1+(n-1)×4=4n-3
(2)由(1)知,sn=n+
n(n-1)×4
2
=2n2-n

bn=
sn
n+c
=
2n2-n
c+n

b1=
1
1+c
b2=
6
2+c
b3=
15
3+c

∵bn是等差数列,∴2b2=b1+b3,∴2c2+c=0,
c=-
1
2
(c=0舍去)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差大于零的等差数列an的前n项和为Sn,且满足a1a6=21,S6=66.
(Ⅰ)求数列an的通项an
(Ⅱ)若数列bn使bn=xan+3,求数列bn前n项之和Tn
(Ⅲ)若数列cn是等差数列,且cn=
Snn+p
,求非零常数p.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.
(1)求数列{an}的通项公式an
(2)若数列{bn}是等差数列,且bn=
Snn+c
,求非零常数c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差大于零的等差数列{an},前n项和为Sn.且满足a3a4=117,a2+a5=22.
(Ⅰ)求数列an的通项公式;
(2)若bn=
Sn
n-
1
2
,求f(n)=
bn
(n+36)bn+1
(n∈N*)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3•a4=117,a2+a5=22,
(1)求通项an
(2)若数列{bn}满足bn=
Snn+c
,是否存在非零实数c,使得{bn}为等差数列?若存在,求出c的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台一模)已知公差大于零的等差数列{an}的前n项和Sn,且满足:a2•a4=65,a1+a5=18.
(1)若1<i<21,a1,ai,a21是某等比数列的连续三项,求i的值;
(2)设bn=
n(2n+1)Sn
,是否存在一个最小的常数m使得b1+b2+…+bn<m对于任意的正整数n均成立,若存在,求出常数m;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案