精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x3+ax2-4(a∈R).若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为
π4

(Ⅰ)设f(x)的导函数是f'(x),若s,t∈[-1,1],求f'(s)+f(t)的最小值;
(Ⅱ)对实数k的值,讨论函数F(x)=f(x)-k零点的个数.
分析:(I)求出f(x)的导函数在x=1处的值,利用函数在切点处的导数值为切线的斜率,列出方程求出a的值,将a的值代入f(x)的解析式,求出其导函数.
(II)列出x、f′(x)/f(x)的变化情况表,求出f(x)的极大值、极小值,求出k的范围.
解答:解:(I)f'(1)=1⇒a=2⇒f(x)=-x3+2x2-4⇒f'(x)=-3x2+4x(3分)
因s,t互相独立,故只要分别求f'(s),f(t),s,t∈[-1,1]的最小值即可
当s=-1,t=0时,f'(s)+f(t)的最小值为-11
(II)等价于讨论f(x)=k的实根的个数
x (-∞,0) 0 (0,
4
3
)
4
3
(
4
3
,+∞)
f'(x) - 0 + 0 -
f(x) -4 -
76
27
k>-
76
27
或k<-4
,一解;k=-
76
27
或k=-4
,二解;-4<k<-
76
27
,三解.
点评:本题1考查函数在切点处的导数值为切线的斜率;解决已知方程的解的个数求参数的范围问题常转化为求函数的极值问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案