精英家教网 > 高中数学 > 题目详情
12.设向量$\overrightarrow a=(m,1)$,$\overrightarrow b=(1,2)$,且${|{\overrightarrow a+\overrightarrow b}|^2}={|{\overrightarrow a}|^2}+{|{\overrightarrow b}|^2}$,则m=-2.

分析 由题意可得$\overrightarrow{a}•\overrightarrow{b}$=0,代值计算即可.

解答 解:∵${|{\overrightarrow a+\overrightarrow b}|^2}={|{\overrightarrow a}|^2}+{|{\overrightarrow b}|^2}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=0,
∵向量$\overrightarrow a=(m,1)$,$\overrightarrow b=(1,2)$,
∴m+2=0,
解得,m=-2,
故答案为:-2;

点评 本题考查了向量的垂直和向量的数量的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,a1=1,sn=n2an(n∈N*).
(1)求 S1,S2,S3,S4
(2)猜想{an}的前n项和 Sn的公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.与角$-\frac{π}{3}$终边相同的角是(  )
A.$\frac{5π}{6}$B.$\frac{π}{3}$C.$\frac{11π}{6}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若f(x)=x2-2x-4lnx,则f′(x)<0的解集(  )
A.(0,+∞)B.(0,2)C.(0,2)∪(-∞,-1)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(ωx+φ).($A>0,ω>0,0<φ<\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式; 
(2)若$f({2α+\frac{π}{3}})=\frac{{\sqrt{10}}}{5}$,且α∈(0,π),求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.原点关于x-2y+1=0的对称点的坐标为(  )
A.($\frac{4}{5}$,-$\frac{2}{5}$)B.(-$\frac{2}{5}$,$\frac{4}{5}$)C.($\frac{4}{5}$,$\frac{2}{5}$)D.($\frac{2}{5}$,-$\frac{4}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,内角A,B,C的对边分别是a,b,c,若bcosC=(2a-c)cosB,则B=(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列结论正确的是(  )
A.sinx<x,x∈(-π,π)B.x-x2>0,x∈(0,2)C.ex>1+x,x∈RD.lnx≤x-1,x∈(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一组数据3,4,5,s,t的平均数是4,这组数据的中位数是m,对于任意实数s,t,从3,4,5,s,t,m这组数据中任取一个,取到数字4的概率的最大值为(  )
A.$\frac{2}{3}$B.$\frac{1}{6}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案