精英家教网 > 高中数学 > 题目详情
已知函数y=2,求它的导数,并说明它的意义.

思路分析:此函数是常数函数,直接利用结论“(c)′=?0”便可以了.

解:∵y=2=常数,∴y′=(2)′=0.

y′=0表示函数y=2图象上每一点处的切线的斜率都是0.

温馨提示

“常数函数的导数为零”这一结论在做题时可直接用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=
4x+2
x+3
,h(x)=
ax+b
cx+d
(c≠0,ad-bc≠0,(d-a)2+4bc>0)

(1)求函数g(x)的不动点x1,x2
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
an-x1
an-x2
}
是等比数列,并求
lim
n→∞
an

(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2sin(2x-
π6
)

(1)写出它的振幅、周期、频率和初相;
(2)求这个函数的单调递减区间;
(3)求出使这个函数取得最大值时,自变量x的取值集合,并写出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是指数函数,且它的图象过点(2,4).
(1)求函数f(x)的解析式;
(2)求f(0),f(-2),f(4);
(3)画出指数函数y=f(x)的图象,并根据图象解不等式f(2x)>f(-x+3).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2,求它的导数,并说明它的意义.

查看答案和解析>>

同步练习册答案