【题目】如图所示,在平行四边形ABCD中,已知AD=2AB=2a,BD= ,AC∩BD=E,将其沿对角线BD折成直二面角.
求证:
(1)AB⊥平面BCD;
(2)平面ACD⊥平面ABD.
【答案】
(1)证明:在△ABD中,AB=a,AD=2a,BD= ,∴AB2+BD2=AD2 ,
∴∠ABD=90°,AB⊥BD.又∵平面ABD⊥平面BCD,平面ABD∩平面
BCD=BD,AB平面ABD,∴AB⊥平面BCD
(2)证明:∵折叠前四边形ABCD是平行四边形,且AB⊥BD,
∴CD⊥BD.∵AB⊥平面BCD,∴AB⊥CD.∵AB∩BD=B,
∴CD⊥平面ABD.又∵CD平面ACD,∴平面ACD⊥平面ABD
【解析】(1)通过在平面BCD内找到直线BD,使AB⊥BD,再由平面与平面垂直的性质证明AB⊥平面BCD;
(2)在平面ACD内找到直线CD与平面ABD垂直证明平面ACD⊥平面ABD.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(ωx+φ)(ω>0,﹣π<φ<0)在区间 上单调递增,且函数值从﹣2增大到0.若 ,且f(x1)=f(x2),则f(x1+x2)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要分析学生初中升学考试的数学成绩对高一年级数学学习有什么影响,在高一年级学生中随机抽取10名学生,分析他们入学的数学成绩(x)和高一年级期末数学考试成绩(y)(如下表):
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
x | 63 | 67 | 45 | 88 | 81 | 71 | 52 | 99 | 58 | 76 |
y | 65 | 78 | 52 | 85 | 92 | 89 | 73 | 98 | 56 | 75 |
(1)画出散点图;
(2)判断入学成绩(x)与高一期末考试成绩(y)是否有线性相关关系;
(3)如果x与y具有线性相关关系,求出回归直线方程;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长都相等的四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,则下面四个结论中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1 , AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.
(Ⅰ)求证:PN⊥AM;
(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com