精英家教网 > 高中数学 > 题目详情
如图,已知点A(0,2)和抛物线y2=x+4上两点B、C,使得AB⊥BC,求点C的纵坐标的取值范围.
分析:设B(y12-4,y1)、C(y2-4,y),表示出直线AB的斜率,根据AB⊥BC可知直线BC的斜率,进而把直线AB方程与抛物线方程联立消去x,根据判别式大于等于0求得y的范围.
解答:解:设B(y12-4,y1)、C(y2-4,y),显然y12-4≠0,故kAB=
y1-2
y12-4
=
1
y1+2

由于AB⊥BC,∴kBC=-(y1+2),从而
y-y1=-(y1+2)[x-(y12-4)]
y2=x+4

消去x,注意到y≠y1,得(2+y1)(y+y1)+1=0⇒y12+(2+y)y1+(2y+1)=0,∵
由△≥0,解得y≤0或y≥4,
当y=0时,点B的坐标为(-3,-1),当y=4时,点B的坐标为(5,-3),均满足题意,
故点C的纵坐标的取值范围是y≤0或y≥4.
点评:本题主要考查了直线与圆锥曲线的综合问题.常需借助韦达定理和判别式来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知点A(0,-3),动点P满足|PA|=2|PO|,其中O为坐标原点.
(Ⅰ)求动点P的轨迹方程.
(Ⅱ)记(Ⅰ)中所得的曲线为C.过原点O作两条直线l1:y=k1x,l2:y=k2x分别交曲线C于点E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,y4)(其中y2>0,y4>0).求证:
k1x1x2
x1+x2
=
k2x3x4
x3+x4

(III)对于(Ⅱ)中的E、F、G、H,设EH交x轴于点Q,GF交x轴于点R.求证:|OQ|=|OR|.(证明过程不考虑EH或GF垂直于x轴的情形)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知点A(0,2)和抛物线y2=x+4上两点B、C,使得AB⊥BC,求点C的纵坐标的取值范围.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省中山市高三诊断数学试卷(理科)(解析版) 题型:解答题

如图,已知点A(0,-3),动点P满足|PA|=2|PO|,其中O为坐标原点.
(Ⅰ)求动点P的轨迹方程.
(Ⅱ)记(Ⅰ)中所得的曲线为C.过原点O作两条直线l1:y=k1x,l2:y=k2x分别交曲线C于点E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,y4)(其中y2>0,y4>0).求证:
(III)对于(Ⅱ)中的E、F、G、H,设EH交x轴于点Q,GF交x轴于点R.求证:|OQ|=|OR|.(证明过程不考虑EH或GF垂直于x轴的情形)

查看答案和解析>>

科目:高中数学 来源:2009年广东省佛山市高考数学一模试卷(理科)(解析版) 题型:解答题

如图,已知点A(0,-3),动点P满足|PA|=2|PO|,其中O为坐标原点.
(Ⅰ)求动点P的轨迹方程.
(Ⅱ)记(Ⅰ)中所得的曲线为C.过原点O作两条直线l1:y=k1x,l2:y=k2x分别交曲线C于点E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,y4)(其中y2>0,y4>0).求证:
(III)对于(Ⅱ)中的E、F、G、H,设EH交x轴于点Q,GF交x轴于点R.求证:|OQ|=|OR|.(证明过程不考虑EH或GF垂直于x轴的情形)

查看答案和解析>>

同步练习册答案