精英家教网 > 高中数学 > 题目详情

已知,函数.
(1)求函数的单调区间;
(2)求证:对于任意的,都有.

(1)单调递增区间为,单调递减区间为,;(2)证明过程详见解析.

解析试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先对求导,利用单调递增,单调递减,通过解不等式,求出函数的单调区间;第二问,由于对于任意的,都有 对于任意的,都有,利用导数判断函数上的单调性,数形结合求出的最小值和的最大值,进行比较,看是否符合.
(1)函数的定义域为,
因为
所以,当,或时,
时,
所以,的单调递增区间为,单调递减区间为,.        6分
(2)因为在区间上单调递增,在区间上单调递减,

所以,当时,
,可得
所以当时,函数在区间上是增函数,
所以,当时,
所以,当时,
对于任意的,都有,所以
时,函数在区间上是增函数,在区间上是减函数,
所以,当时,
所以,当时,
对于任意的,都有,所以
综上,对于任意的,都有.      13分
考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的最值、恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3+ax2+bx+a2(a,b∈R).
(1)若函数f(x)在x=1处有极值10,求b的值;
(2)若对于任意的a∈[-4,+∞),f(x)在x∈[0,2]上单调递增,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ln x--ln a(x>0,a>0且为常数).
(1)当k=1时,判断函数f(x)的单调性,并加以证明;
(2)当k=0时,求证:f(x)>0对一切x>0恒成立;
(3)若k<0,且k为常数,求证:f(x)的极小值是一个与a无关的常数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)(2011•陕西)设f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与的大小关系;
(Ⅲ)求a的取值范围,使得g(a)﹣g(x)<对任意x>0成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的单调区间和极值;
(2)若,当时,在区间内存在极值,求整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若,求的单调区间;
(2)若当时,,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小值;
(2)若,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线满足下列条件:
①过原点;②在处导数为-1;③在处切线方程为.
(1) 求实数的值;
(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ex-ax-2.
(1)求f(x)的单调区间;
(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.

查看答案和解析>>

同步练习册答案