精英家教网 > 高中数学 > 题目详情
如果有穷数列a1,a2,a3,…,am(m=2k,k∈N*)满足条件a1=-am,a2=-am-1,…,am=-a1即ai=-am-i+1(i=1,2,…,m),我们称其为“反对称数列”.
(1)请在下列横线上填入适当的数,使这6个数构成“反对称数列”:-8,
-4
-4
,-2,
2
2
,4,
8
8

(2)设{cn}是项数为30的“反对称数列”,其中c16,c17,c18,…,c30构成首项为-1,公比为2的等比数列.设Tn是数列{ncn}的前n项和,则T15=
216-17
216-17
分析:(1)根据“反对称数列”的定义,可求出所求;
(2)根据“反对称数列”的定义可知c1,c2,c3,…,c15构成末项为1,公比为
1
2
的等比数列,首项为214,然后利用错位相消法求所求即可.
解答:解:(1)∵有穷数列a1,a2,a3,…,am(m=2k,k∈N*)满足条件a1=-am,a2=-am-1,…,am=-a1即ai=-am-i+1(i=1,2,…,m),我们称其为“反对称数列”.
∴a1=-a6,a2=-a5,a3=-a4
∴a6=-a1=8,a2=-a5=4,a4=-a3=2
故答案为:-4,2,8
(2)∵{cn}是项数为30的“反对称数列”,其中c16,c17,c18,…,c30构成首项为-1,公比为2的等比数列.
∴c1,c2,c3,…,c15构成末项为1,公比为
1
2
的等比数列,首项为214
T15=c1+2c2+3c3+…+15c15
T15=214+2•213+3•212+…+15×1①
1
2
T15=213+2•212+…+15×
1
2

①-②得
1
2
T15=214+213+•212+…+1-15×
1
2

∴T15=216-17.
故答案为:216-17
点评:本题主要考查了数列的应用,同时考查了利用错位相消法求数列的和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果有穷数列a1,a2,a3,…,am(m为正整数)满足a1=am,a2=am-1,…,am=a1.即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列“例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.设{bn}是项数为2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,23,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2010项和S2010可以是
(1)22010-1     (2)21006-2       (3)2m+1-22m-2010-1
其中正确命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如果有穷数列a1,a2,…,an(n∈N*),满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如:数列1,2,3,4,3,2,1就是“对称数列”.已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,则数列bn的前2008项和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命题正确的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如果有穷数列a1,a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能为:①22009-1  ②2(22009-1)③3•2m-1-22m-2010-1  ④2m+1-22m-2009-1;其中正确的有(  )个.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如果有穷数列a1a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能的取值的序号为(  )
①22009-1   ②2(22009-1)③3•2m-1-22m-2010-1   ④2m+1-22m-2009-1.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第五次月考理科数学 题型:填空题

如果有穷数列a1,a2,…an(a∈N*)满足条件:,我们称

其为“对称数列”,例如:数列1,2,3,3,2,1和数列1,2,3,4,3,2,1都为“对称数列”。已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,……,2m-1依次为该数列中连续的前m项,则数列的前2009项和S2009所有可能的取值的序号为           

①  22009—1    ②2·(22009—1)    ③3×2m-1—22m-2010—1    ④2m+1—22m-2009—1

 

查看答案和解析>>

同步练习册答案