精英家教网 > 高中数学 > 题目详情

【题目】请阅读下列材料:若两个正实数a1 , a2满足a12+a22=1,那么a1+a2 .
证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x , 恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2 .
根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为

【答案】a1+a2+…+an
【解析】构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-an)2=nx2-2(a1+a2+…+an)x+1,
因为对一切实数x , 恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2+…+an)2-4n≤0,
所以a1+a2+…+an .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合M={x|x2﹣3x﹣18≤0},N={x|1﹣a≤x≤2a+1}.
(1)若a=3,求M∩N和RN;
(2)若MN,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用两种循环写出1+2+3+…+100的算法,并画出各自的流程图

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式(其中)。

(1)当a=4时,求不等式的解集;

(2)若不等式有解,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】六个面都是平行四边形的四棱柱称为平行六面体。如,在平行四边形 ABCD 中,有AC2+BD2=2(AB2+AD2) ,那么在图(2)的平行六面体 ABCD-A1B1C1D1 中有AC12+BD12+CA12+DB12 等于( )
12
A.2(AB2+AD2+AA12)
B.3(AB2+AD2+AA12)
C.4(AB2+AD2+AA12)
D.3(AB2+AD2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)设函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当函数有最大值且最大值大于时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若 ,求 的值;当 时,求 的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点为,且离心率为 .
(1)求椭圆的方程;
(2)直线(与坐标轴 不平行)与椭圆交于不同的两点,且线段中点的横坐标为 ,求直线倾斜角的取值范围.

查看答案和解析>>

同步练习册答案