9£®mȡʲôֵʱ£¬·½³Ì×é$\left\{\begin{array}{l}{2{x}^{2}+2m{y}^{2}=2-m}\\{x-y+1=0}\end{array}\right.$ÓÐÁ½¸öÏàµÈµÄʵÊý½â£¿²¢Çó³öÕâʱ·½³Ì×éµÄ½â£®

·ÖÎö ÓÉ·½³Ì×éÏûÈ¥y¿ÉµÃ£¨2+2m£©x2+4mx+3m-2=0£¬ÓÉ·½³Ì×éÓÐÁ½¸öÏàµÈµÄʵÊý½â£¬¿ÉµÃÅбðʽ¡÷=0£¬½â·½³Ì¼´¿ÉµÃµ½mµÄÖµ¼°·½³Ì×éµÄ½â£®

½â´ð ½â£ºÓÉ·½³Ì×é$\left\{\begin{array}{l}{2{x}^{2}+2m{y}^{2}=2-m}\\{x-y+1=0}\end{array}\right.$ÏûÈ¥y¿ÉµÃ
2x2+2m£¨x+1£©2-2+m=0£¬
¼´Îª£¨2+2m£©x2+4mx+3m-2=0£¬
ÓÉ·½³Ì×éÓÐÁ½¸öÏàµÈµÄʵÊý½â£¬¿ÉµÃ
Åбðʽ¡÷=£¨4m£©2-4£¨2+2m£©£¨3m-2£©=0£¬
½âµÃm=1»ò-2£¬
µ±m=1ʱ£¬4x2+4x+1=0£¬½âµÃx=-$\frac{1}{2}$£¬y=$\frac{1}{2}$£»
µ±m=-2ʱ£¬x2+4x+4=0£¬½âµÃx=-2£¬y=-1£®
Ôòm=1ʱ£¬·½³Ì×éµÄ½âΪ$\left\{\begin{array}{l}{x=-\frac{1}{2}}\\{y=\frac{1}{2}}\end{array}\right.$£»
m=-2ʱ£¬·½³Ì×éµÄ½âΪ$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$£®

µãÆÀ ±¾Ì⿼²éת»¯Ë¼ÏëµÄÔËÓ㬿¼²é¶þ´Î·½³ÌÓÐÏàµÈʵÊý½âµÄÌõ¼þ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÉèÕýʵÊýx£¬yÂú×ãxy=1£¬Çóº¯Êýf£¨x£¬y£©=$\frac{x+y}{[x][y]+[x]+[y]+1}$µÄÖµÓò£®£¨ÆäÖÐ[x]±íʾ²»³¬¹ýxµÄ×î´óÕûÊý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Ñù±¾Êý¾Ý96£¬98£¬92£¬95£¬94µÄ·½²îΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Çóº¯Êýy=£¨sinx+1£©£¨cosx+1£©£¬x¡Ê[-$\frac{¦Ð}{12}$£¬$\frac{¦Ð}{12}$]µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÊýÁÐ{an}µÄͨÏʽÊÇan=n2-3n-28£¬»­³ö¸ÃÊýÁеÄͼÏ󣬸ù¾ÝͼÏó£¬Åжϴӵڼ¸ÏîÆð£¬Õâ¸öÊýÁÐÊǵÝÔöµÄ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÊýÁÐ{an}µÄͨÏʽan=-58+16n-n2£¬Ôò£¨¡¡¡¡£©
A£®{an}ÊǵÝÔöÊýÁÐB£®{an}ÊǵݼõÊýÁÐ
C£®{an}ÏÈÔöºó¼õ£¬ÓÐ×î´óÖµD£®{an}ÏȼõºóÔö£¬ÓÐ×îСֵ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Éèa£¾0£¬½â¹ØÓÚxµÄ²»µÈʽ0£¼$\frac{ax}{x-1}$£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÉèÈñ½ÇÈý½ÇÐÎABCµÄÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬a=2bsinA£®
£¨I£©ÇóBµÄ´óС£»
£¨¢ò£©Èôb=2£®Çóa+cµÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èôº¯Êýy=$\frac{x-p}{x+1}$ÔÚ£¨-1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ÔòpµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®p£¼-1B£®p£¼1C£®p£¾-1D£®p£¾1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸