精英家教网 > 高中数学 > 题目详情

各项均为正数的数列{an}中,设,且
(1)设,证明数列{bn}是等比数列;
(2)设,求集合

(1)详见解析,(2)).

解析试题分析:(1)数列{bn}是等比数列,实际就是证明为常数,首先列出的关系式,由知消去参数,所以①,当时, ②,①-②,得,化简得).因为数列{an}的各项均为正数,所以数列单调递减,所以.所以).
(2)由(1)知,所以,即.由,得,又时,,所以数列从第2项开始依次递减.当时,若,则,与矛盾,所以时,,即.令,则,所以,即存在满足题设的数组).当时,若,则不存在;若,则;若时,,(*)式不成立.
【解】(1)当时,
,解得.                             2分
,所以 ①    
时, ②
①-②,得),           4分

,所以
因为数列{an}的各项均为正数,所以数列单调递减,所以
所以).
因为,所以
所以数列{bn}是等比数列.                                   6分
(2)由(1)知,所以,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知,各项均为正数的数列满足,若,则的值是        .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足:.
(1)求数列的通项公式;
(2)令,数列的前项和为,求证:时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项,公差,且第项、第项、第项分别是等比数列的第项、第项、第项.
(1)求数列的通项公式;
(2)设数列,均有成立,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}共有n)项,且,对每个i (1≤iiN),均有
(1)当时,写出满足条件的所有数列{an}(不必写出过程);
(2)当时,求满足条件的数列{an}的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列是首项为,公差为的等差数列,其前项和为,且成等差数列.
(1)求数列的通项公式;
(2)记的前项和为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前三项分别为a1=5,a2=6,a3=8,且数列{an}的前n项和Sn满足Snm(S2nS2m)-(nm)2,其中mn为任意正整数.
(1)求数列{an}的通项公式及前n项和Sn
(2)求满足an+33=k2的所有正整数kn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)设函数的图像的顶点的纵坐标构成数列,求证:为等差数列;
(Ⅱ)设函数的图像的顶点到轴的距离构成数列,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的公差大于零,且是方程的两个根;各项均为正数的等比数列的前项和为,且满足
(1)求数列的通项公式;
(2)若数列满足,求数列的前n项和.

查看答案和解析>>

同步练习册答案