精英家教网 > 高中数学 > 题目详情

【题目】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
①记Qi为第i名工人在这一天中加工的零件总数,则Q1 , Q2 , Q3中最大的是
②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1 , p2 , p3中最大的是

【答案】Q1;p2
【解析】解:①若Qi为第i名工人在这一天中加工的零件总数,
Q1=A1的综坐标+B1的综坐标;
Q2=A2的综坐标+B2的综坐标,
Q3=A3的综坐标+B3的综坐标,
由已知中图象可得:Q1 , Q2 , Q3中最大的是Q1
②若pi为第i名工人在这一天中平均每小时加工的零件数,
则pi为AiBi中点与原点连线的斜率,
故p1 , p2 , p3中最大的是p2
所以答案是:Q1 , p2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.

(Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为 ,求线段AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lm,平面αβ,下列命题正确的是 (  )

A. lβlααβ

B. lβmβlαmααβ

C. lmlαmβαβ

D. lβmβlαmαlmMαβ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线x2=y,点A(﹣ ),B( ),抛物线上的点P(x,y)(﹣ <x< ),过点B作直线AP的垂线,垂足为Q.
(Ⅰ)求直线AP斜率的取值范围;
(Ⅱ)求|PA||PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知空间中三点A-2,0,2,B-1,1,2,C-3,0,4,设a=,b=

1求向量a与向量b的夹角的余弦值;

2若ka+b与ka-2b互相垂直,求实数k的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=excosx﹣x.(13分)
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣2x+ex ,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)
(Ⅰ)求b关于a的函数关系式,并写出定义域;
(Ⅱ)证明:b2>3a;
(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣ ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,∠C=,AC=BC,M、N分别是BC、AB的中点,将BMN沿直线MN折起,使二面角B′﹣MN﹣B的大小为,则B'N与平面ABC所成角的正切值是(   )

A. B. C. D.

查看答案和解析>>

同步练习册答案