精英家教网 > 高中数学 > 题目详情
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:
日期1日2日3日4日5日
温差x(℃)101113128
发芽y(颗)2325302616
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,剩下的2组数据用于回归方程检验,
(1)若选取的是12月1日和12月5日这两日的数据进行检验,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
y
=
b
x+
a

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(3)请预测温差为14℃的发芽数?
考点:回归分析的初步应用
专题:应用题,概率与统计
分析:(1)根据所给的数据,先做出x,y的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.
(2)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.
(3)将x=14代入(1)中所得的回归直线方程,即可得到温差为14℃的预报值.
解答: 解:(1)由数据,求得
.
x
=12,
.
y
=27.
由公式,求得b=2.5,a=
.
y
-b
.
x
=-3
∴y关于x的线性回归方程为y=2.5x-3.
(2)当x=10时,y=2.5×10-3=22,|22-23|<2;
同样当x=8时,y=2.5×8-3=17,|17-16|<2;
∴该研究所得到的回归方程是可靠的.
(3)当x=14时,则y=
5
2
x-3=
5
2
×14-3=32

所以当温差为14℃的发芽数约为32.
点评:本题考查线性回归方程的求法,考查最小二乘法,考查估计验算所求的方程是否是可靠的,是一个综合题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+ax-b.若a、b都是从区间[0,4]内任取的一个数,则f(1)>0成立的概率是(  )
A、
9
16
B、
9
32
C、
7
16
D、
23
32

查看答案和解析>>

科目:高中数学 来源: 题型:

某校数学兴趣班将10名成员平均分为甲、乙两组进行参赛选拔,在单位时间内每个同学做竞赛题目若干,其中做对题目的个数如下表:

同学
个数
组别
1号2号3号[4号5号
甲组457910
乙组56789
(Ⅰ)分别求出甲、乙两组同学在单位时间内做对题目个数的平均数及方差,并由此分析这两组的数学水平;
(Ⅱ)学校教务部门从该兴趣班的甲、乙两组中各随机抽取1名学生,对其进行考查,若两人做对题目的个数之和超过12个,则称该兴趣班为“优秀兴趣班”,求该兴趣班获“优秀兴趣班”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在试验中随机事件A的频率p=
nA
n
满足(  )
A、0<P≤1
B、0≤p<1
C、0<p<1
D、0≤p≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的中心在坐标原点,长轴的端点为A,B,右焦点为F,且,
AF
FB
=1,|
OF
|=1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆的右焦点F作直线l1,l2,直线l1与椭圆分别交于点M,N,直线l2与椭圆分别交于点P,Q,且l1⊥l2,求四边形MPNQ面积取最小值以及直线l1,l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:sin245°+sin2105°+sin2165°=
3
2
;sin210°+sin270°+sin2130°=
3
2

通过观察上述两等式的规律,请你写出一般性的命题,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx2+cx+d是定义在R上的函数,其图象交x轴于A、B、C三点,若点B坐标为(2,0),且f(x)在[-1,0]和[4,5]上有相同单调性,在[0,2]和[4,5]上有相反的单调性.
(1)求c的值;
(2)求|AC|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-x-m在区间(-1,1)上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:x>0,y>0,x•y=x+3y+1,则x+y的最小值是
 

查看答案和解析>>

同步练习册答案