精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为(γ为参数),曲线的参数方程为(s为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐秘系,已知点A的极坐标为,直线l()交于点B,其中

1)求曲线的极坐标方程以及曲线的普通方程;

2)过点A的直线m交于MN两点,若,且,求α的值.

【答案】1()(2.

【解析】

1)消去参数即可得曲线的直角坐标方程,由极坐标方程与直角坐标方程转化公式即可得曲线的极坐标方程;

2)设直线l的参数方程,进而可得直线m的参数方程,分别与联立,可得MNB对应的参数的关系,代入计算即可得解.

1曲线的参数方程为,(γ为参数),

曲线的普通方程为,即

得曲线的极坐标方程为

即曲线的极坐标方程为

由曲线的参数方程,(s为参数),可得

故曲线的普通方程为().

2A的极坐标为,故A的直角坐标为

l(p为参数),

则直线m(t为参数),

联立m的方程

,

联立l的方程(),

MNB对应的参数分别为

可得

,化简得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学共有1000人,其中男生700人,女生300人,为了了解该校学生每周平均体育锻炼时间的情况以及经常进行体育锻炼的学生是否与性别有关(经常进行体育锻炼是指:周平均体育锻炼时间不少于4小时),现在用分层抽样的方法从中收集200位学生每周平均体育锻炼时间的样本数据(单位:小时),其频率分布直方图如图.已知在样本数据中,有40位女生的每周平均体育锻炼时间超过4小时,根据独立性检验原理(

附:,其中.

0.10

0.05

0.01

0.005

2.706

3.841

6.635

7.879

A.95%的把握认为该校学生每周平均体育锻炼时间与性别无关

B.90%的把握认为该校学生每周平均体育锻炼时间与性别有关

C.90%的把握认为该校学生每周平均体育锻炼时间与性别无关

D.95%的把握认为该校学生每周平均体育锻炼时间与性别有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求的单调递增区间;

2)求证:曲线在区间上有且只有一条斜率为2的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(在花卉进行硬枝扦插过程中,常需要用生根粉调节植物根系生长.现有20株使用了生根粉的花卉,在对最终花卉存活花卉死亡进行统计的同时,也对在使用生根粉2个小时后的生根量进行了统计,这20株花卉生根量如下表所示,其中生根量在6根以下的视为不足量,大于等于6根为足量”.现对该20株花卉样本进行统计,其中花卉存活13.已知花卉存活但生根量不足量的植株共1.

编号

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

生根量

6

8

3

8

9

5

6

6

2

7

7

5

9

6

7

8

8

4

6

9

1)完成列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为花卉的存活生根足量有关?

生根足量

生根不足量

总计

花卉存活

花卉死亡

总计

20

2)若在该样本生根不足量的植株中随机抽取3株,求这3株中恰有1花卉存活的概率.

参考数据:

独立性检验中的,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学中有许多形状优美、寓意美好的曲线,如下图就是在平面直角坐标系的“心形曲线”,又名RC心形线.如果以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,其RC心形线的极坐标方程为.

1)求RC心形线的直角坐标方程;

2)已知与直线为参数),若直线RC心形线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过点作互相垂直的两条直线分别交椭圆于点不重合).

1)证明:直线过定点

2)若以点为圆心的圆与直线相切,且切点为线段的中点,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国农业银行广元分行发行“金穗广元·剑门关旅游卡”是以“游广元、知广元、爱广元共享和谐广元”为主题活动的一项经济性和公益性相结合的重大举措,以最优惠的价格惠及广元户籍市民、浙江及黑龙江授建省群众、省内援建市市民,凡上述对象均可办理此卡,本人凭此卡及本人身份证一年内(期满后可重新充值办理)在广元市范围内可无限次游览所有售门票景区景点,如:剑门关、朝天明月峡、旺苍鼓城山—七里峡、青川唐家河、广元皇泽寺、苍溪梨博园、昭化古城等,现有浙江及黑龙江援建省群众甲乙两人到广元旅游(同游),第一天他们游览了剑门关、朝天明月峡,第二天他们准备从上面剩下的5个景点中选两个景点游览,则第二天游览青川唐家河的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形与正三角形的边长均为2,它们所在平面互相垂直,平面平面

(1)求证:平面平面

(2)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数,当时,,则下列命题正确的是(

A.时,

B.函数3个零点

C.的解集为

D.,都有

查看答案和解析>>

同步练习册答案