精英家教网 > 高中数学 > 题目详情
(2013•浙江)如图F1、F2是椭圆C1+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是(  )

A.       B.       C.       D.
D
设|AF1|=x,|AF2|=y,∵点A为椭圆C1+y2=1上的点,
∴2a=4,b=1,c=
∴|AF1|+|AF2|=2a=4,即x+y=4;①
又四边形AF1BF2为矩形,
+=,即x2+y2=(2c)2==12,②
由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2a,焦距为2c,
则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2=2
∴双曲线C2的离心率e===
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的离心率为轴被曲线截得的线段长等于的长半轴长。

(1)求的方程;
(2)设轴的交点为M,过坐标原点O的直线相交于点A,B,直线MA,MB分别与相交与D,E.
①证明:
②记△MAB,△MDE的面积分别是.问:是否存在直线,使得=?请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方形中,.以的中点为坐标原点,建立如图所示的直角坐标系.

(1) 求以为焦点,且过两点的椭圆的标准方程;
(2) 过点的直线交(1)中椭圆于两点,是否存在直线,使得以线段为直径的圆恰好过坐标原点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点在抛物线的准线上,则该椭圆的离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左、右焦点分别为,上顶点为A,在x轴负半轴上有一点B,满足三点的圆与直线相切.
(1)求椭圆C的方程;
(2)过右焦点作斜率为k的直线与椭圆C交于M,N两点,线段MN的垂直平分线与x轴相交于点P(m,0),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点为,若椭圆上存在一个点,满足以椭圆短轴为直径的圆与线段相切于该线段的中点,则椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率.
(1)求椭圆C的方程;
(2)已知过点的直线与该椭圆相交于A、B两点,试问:在直线上是否存在点P,使得是正三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图F1.F2是椭圆: 与双曲线的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是(    )

A.     B.       C.        D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知F是椭圆的左焦点,P是椭圆上一点,PF⊥x轴,OP∥AB(O为坐标原点),则该椭圆的离心率是(   )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案