过点的直线交直线于,过点的直线交轴于点,,.
(1)求动点的轨迹的方程;
(2)设直线l与相交于不同的两点、,已知点的坐标为(-2,0),点Q(0,)在线段的垂直平分线上且≤4,求实数的取值范围.
(1) ;(2)综上所述,且≠0.
【解析】
试题分析:(1)由题意,直线的方程是,∵,∴的方程是
若直线与轴重合,则,若直线不与重合,可求得直线的方程是,与的方程联立消去得,因不经过,故动点动的轨迹的方程是 6分
(2)设(x1,y1),直线l的方程为y=k(x+2)于是、两点的坐标满足方程组 由方程消去y并整理得(1+4k2)x2+16k2x+16k2-4=0由-2x1=得x1=,从而y1=设线段的中点为N,则N(,) 8分
以下分两种情况:①当k=0时,点的坐标为(2,0),线段的垂直平分线为y轴,
于是,由≤4得:.
②当k≠0时,线段的垂直平分线方程为 y-=-(x+)令x=0,
得m=∵,∴,
由=-2x1-m(y1-m)=+ (+)=≤4
解得∴m== 11分
∴当
当时,≥4
∴
综上所述,且≠0.…13分
考点:本题主要考查椭圆的方程,直线与椭圆的位置关系,平面向量的坐标运算,均值定理的应用。
点评:难题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(1)求椭圆方程时,应用了参数法,并对可能的情况进行了讨论。(2)则在应用韦达定理的基础上,将m用k表示,并利用均值定理,逐步求得m的范围。
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
| ||
2 |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源:2013-2014学年陕西西安长安区一中高三上学期第三次检测理科数学试卷(解析版) 题型:解答题
已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。
(Ⅰ)试问在轴上是否存在不同于点的一点,使得与轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。
(Ⅱ)若的面积为,求向量的夹角;
查看答案和解析>>
科目:高中数学 来源:2014届四川省高三第一次月考理科数学试卷(解析版) 题型:填空题
在平面直角坐标系中,椭圆的中心为原点,焦点、在轴上,离心率为.过点的直线交椭圆于、两点,且的周长为16,那么椭圆的方程为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com