精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为正方形,中点.

(1)求点到平面的距离;

(2)求二面角的余弦值.

【答案】(1);(2)

【解析】试题分析:(1)根据勾股定理可证明平面,从而可分别以轴、轴,轴,建立空间直角坐标系,先求的方向向量,再出利用向量垂直数量积为零列方程组求出平面的一个法向量,从而可得线面成角的正弦值,进而可得结果;(2)利用向量垂直数量积为零列方程组求出平面的一个法向量,结合(1)的结论,利用空间向量夹角余弦公式可得二面角的余弦值.

试题解析:∵正方形边长

,∴,∴平面

∴分别以轴、轴,轴,

建立如图所示的空间直角坐标系,

(1)设平面的一个法向量

,令,得

与平面所成角的正弦值

∴点到平面的距离为

(2)设平面的一个法向量

,令,得

,∴二面角的余弦值为

【方法点晴】本题主要考查利用空间向量求二面角与线面角,属于难题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则函数g(x)=f(f(x))﹣2在区间(﹣1,3]上的零点个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为(
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求焦点在轴,焦距为4,并且经过点的椭圆的标准方程;

(2)已知双曲线的渐近线方程为且与椭圆有公共焦点,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且,若存在,,使得成立,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在锐角中,垂心关于边的对称点分别为,关于边的中点的对称点分别为.证明:

(1)六点共圆;

(2)

(3).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是奇函数又是增函数的为(

A. B. C. D. y=ln

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为抛物线上存在一点到焦点的距离等于3.

(1)求抛物线的方程;

(2)过点的直线与抛物线相交于两点(两点在轴上方),点关于轴的对称点为的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|﹣2|x|.
(1)求不等式f(x)≤﹣6的解集;
(2)若存在实数x满足f(x)=log2a,求实数a的取值范围.

查看答案和解析>>

同步练习册答案