精英家教网 > 高中数学 > 题目详情
20.已知实数x、y满足$\left\{\begin{array}{l}x≥1\\ y≤a\\ x-y≤0\end{array}\right.({a>1})$,若z=2x+y的最大值为9,则实数a的值为(  )
A.2B.3C.4D.5

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,先确定z=2x+y的最大值是9时,对应的最优解,进行求解即可.

解答 解:由z=2x+y得y=-2x+z,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=-2x+z,
由图象可知当直线y=-2x+z,过点A时,
直线y=-2z+z的截距最大,此时z最大,2x+y=9,
由$\left\{\begin{array}{l}{y=x}\\{2x+y=9}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$,即A(3,3),
同时A也在直线y=a上,
∴a=3,
故选:B.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.
(1)求证:对m∈R,直线l与圆C总有两个不同交点;
(2)设l与圆C交于不同两点A,B,求弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.直线l过点P(2,1),与x轴,y轴的正半轴分布交于A,B两点,O为坐标原点.
(1)当直线l的斜率k=-1时,求△AOB的外接圆的面积;
(2)当△AOB的面积最小时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2x3-ax2+8.
(1)若f(x)<0对?x∈[1,2]恒成立,求实数a的取值范围;
(2)是否存在整数a,使得函数g(x)=f(x)+4ax2-12a2x+3a3-8在区间(0,1)上存在极小值,若存在,求出所有整数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x∈N,则方程x2+x-2=0的解集用列举法可表示为{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.炮兵习惯于把周角的$\frac{1}{6000}$作为度量角的单位,称为“密位“,1°及1弧度分别等于多少密位?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义点P(x0,y0)到直线l:ax+by+c=0(a2+b2≠0)的有向距离为:$d=\frac{{a{x_0}+b{y_0}+c}}{{\sqrt{{a^2}+{b^2}}}}$.已知点P1、P2到直线l的有向距离分别是d1、d2.以下命题正确的是(  )
A.若d1=d2=1,则直线P1P2与直线l平行
B.若d1=1,d2=-1,则直线P1P2与直线l垂直
C.若d1+d2=0,则直线P1P2与直线l垂直
D.若d1•d2≤0,则直线P1P2与直线l相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等比数列{an}的前n项和为Sn,a1=1,且S1,2S2,3S3成等差数列.
(1)求数列{an}的通项公式;
(2)设$\frac{1}{b_n}={log_3}{a_{n+1}}•lo{g_3}{a_{n+2}}$求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.$已知\overrightarrow a=(sinθ,\frac{1}{3}),\overrightarrow b=(cosθ,-1),θ∈R$
(1)若$\overrightarrow a$∥$\overrightarrow b$,求tanθ的值;      
(2)若$\overrightarrow a⊥\overrightarrow b$,求sin2θ的值.

查看答案和解析>>

同步练习册答案