精英家教网 > 高中数学 > 题目详情
(2009•淄博一模)已知非零向量
AB
AC
BC
满足(
AB
|
AB
|
+
AC
|
AC
|
)•
BC
=0,且
AC
BC
|
AC
|•|
BC
|
=
2
2
,则三角形ABC是(  )
分析:由非零向量
AB
AC
BC
满足(
AB
|
AB
|
+
AC
|
AC
|
)•
BC
=0,知∠A的角平分线与BC边垂直,由
AC
BC
|
AC
|•|
BC
|
=
2
2
,知cos∠C=
2
2
,由此能导出△ABC为等腰直角三角形.
解答:解:∵非零向量
AB
AC
BC
满足(
AB
|
AB
|
+
AC
|
AC
|
)•
BC
=0,
∴∠A的角平分线与BC边垂直,
∴△ABC为等腰三角形,
AC
BC
|
AC
|•|
BC
|
=
2
2

∴cos∠C=
AC
BC
|
AC
|•|
BC
|
=
2
2

∴∠C为45度,
故△ABC为等腰直角三角形.
故选D.
点评:本题考查向量在几何中的应用,是中档题.解题时要认真审题,仔细解答,注意平面向量数量积的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•淄博一模)已知命题p:?x∈R,cosx≤1,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)若不等式组
x-y+5≥0
y≥a
0≤x≤3
表示的平面区域是一个三角形,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=90°,PA=PB,PC=PD
(1)证明平面PAB⊥平面ABCD;
(2)如果AD=1,BC=3,CD=4,且侧面PCD的面积为8,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)已知m,n是不同的直线,α与β是不重合的平面,给出下列命题:
①若m∥α,则m平行与平面α内的无数条直线
②若α∥β,m?α,n?β,则m∥n
③若m⊥α,n⊥β,m∥n,则α∥β
④若α∥β,m?α,则m∥β
上面命题中,真命题的序号是
①③④
①③④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)f(x)是定义在R上的奇函数,且当x≥0时f(x)=x2,若对任意的x∈[-2-
2
,2+
2
]
不等式f(x+t)≤2f(x)恒成立,则实数t的取值范围是(  )

查看答案和解析>>

同步练习册答案