精英家教网 > 高中数学 > 题目详情

【题目】已知函数对任意的实数m,n都有,且当,.

(1)

(2)求证:R上为增函数;

(3),且关于x的不等式对任意的恒成立,求实数的取值范围.

【答案】(1).

(2)证明见解析;

(3).

【解析】

(1) 代入求值即可;

(2)利用单调性的定义、充分利用和当,.即可证明出R上为增函数;

(3)利用把不等式转化为两个函数值的大小关系的式子,再利用(2)的结论,可以得到一个不等式,要想这个不等式对任意的恒成立,通过构造函数,利用函数的最值最后求出实数的取值范围.

1)令,,∴.

2)证明:任取,.

,,∵,

,∴R上为增函数.

3,

,∵,∴.

R上为増函数,∴

对任意的恒成立

,只需满足即可

,,上递增

因此,,此时;当,即时,

,,

此时.

综上,实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求下列不等式的解集:

(1);

(2);

(3);

(4);

(5);

(6).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数为,且对任意的实数都有是自然对数的底数),且,若关于的不等式的解集中恰有两个整数,则实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】秸秆还田是当今世界上普通重视的一项培肥地力的增产措施,在杜绝了秸秆焚烧所造成的大气污染的同时还有增肥增产作用.某农机户为了达到在收割的同时让秸秆还田,花元购买了一台新型联合收割机,每年用于收割可以收入万元(已减去所用柴油费);该收割机每年都要定期进行维修保养,第一年由厂方免费维修保养,第二年及以后由该农机户付费维修保养,所付费用(元)与使用年数的关系为:,已知第二年付费元,第五年付费元.

(1)试求出该农机户用于维修保养的费用(元)与使用年数的函数关系;

(2)这台收割机使用多少年,可使平均收益最大?(收益=收入-维修保养费用-购买机械费用)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们可以把看作每天的"进步率都是1%,一年后是;而把看作每天的落后率都是1%,一年后是.利用计算工具计算并回答下列问题:

1)一年后进步的是落后的多少倍?

2)大约经过多少天后进步的分别是落后10倍、100倍、1000倍?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场经营一批进价为30/件的商品,在市场试销中发现,此商品的销售单价x(单位:元)与日销售量y(单位:件)之间有如下表所示的关系.

x

30

40

45

50

y

60

30

15

0

1)根据表中提供的数据描出实数对的对应点,根据画出的点猜想yx之间的函数关系,并写出一个函数解析式;

(2)设经营此商品的日销售利润为P(单位:元),根据上述关系,写出P关于x的函数解析式,并求销售单价为多少元时,才能获得最大日销售利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分) 已知P32),一直线过点P

若直线在两坐标轴上截距之和为12,求直线的方程;

若直线xy轴正半轴交于AB两点,当面积为12时求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.

1)求函数图象的对称中心;

2)类比上述推广结论,写出函数的图象关于y轴成轴对称图形的充要条件是函数为偶函数的一个推广结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,离心率为,过的直线与椭圆交于两点,且的周长为8.

(1)求椭圆的方程;

(2)直线过点,且与椭圆交于两点,求面积的最大值.

查看答案和解析>>

同步练习册答案