精英家教网 > 高中数学 > 题目详情
4.设△ABC的角A,B,C所对的边分别是a,b,c,若$2acosB=c,sinAsinB={\frac{1}{2}}$,则△ABC为(  )
A.等边三角形B.等腰直角三角形
C.锐角非等边三角形D.钝角三角形

分析 2acosB=c,利用余弦定理可得$2a×\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=c,a=b.即A=B,再利用sinAsinB=$\frac{1}{2}$,即可得出.

解答 解:∵2acosB=c,∴$2a×\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=c,化为a=b.
∴A=B,
∴A,B为锐角.
∵sinAsinB=$\frac{1}{2}$,∴sin2A=$\frac{1}{2}$,解得sinA=$\frac{\sqrt{2}}{2}$,A∈$(0,\frac{π}{2})$,
∴$A=B=\frac{π}{4}$,
C=$\frac{π}{2}$.
∴△ABC为等腰直角三角形.
故选:B.

点评 本题考查了正弦定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
(1)sin213°+cos217°-sin 13°cos 17°;
(2)sin215°+cos215°-sin 15°cos 15°;
(3)sin218°+cos212°-sin 18°cos 12°;
(4)sin2(-18°)+cos248°-sin(-18°)cos 48°;
(5)sin2(-25°)+cos255°-sin(-25°)cos 55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下列命题:
①如果一条直线平行于平面内的一条直线,那么这条直线与这个平面平行;
②垂直于同一条直线的两个平面互相平行;
③如果一条直线与平面内无数条直线都垂直,那么这条直线与这个平面垂直;
④如果一个平面内有一条直线与另一个平面垂直,那么这两个平面互相垂直.
其中正确的命题的序号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知α,β是平面,a,b是直线,则下列命题中不正确的是(  )
A.若a∥b,a⊥α,则b⊥αB.若a∥α,α∩β=b,则a∥b
C.若a⊥α,a⊥β,则α∥βD.若a⊥α,a?β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,在Rt△ABC中,∠CAB=90°,AD是∠CAB的平分线,tanB=$\frac{1}{2}$,则CD:DB=1:2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设正实数x,y,z满足x2-xy+4y2-z=0.则当$\frac{z}{xy}$取得最小值时,x+4y-z的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知a≥1,f(x)=x3+3|x-a|,若函数f(x)在[-1,1]上的最大值和最小值分别记为M,m,则M-m的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(x-1)3+(x-1)4的展开式中含x2项的系数等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.测谎仪是一种通过人的脑电波的变化,来判断被测人是否说谎的一种仪器,对于某一语言刺激,没说谎的人的脑电波一般是正弦波,而说谎的人的脑电波则是锯齿波,下面是询问某一问题时,一个没说谎的人脑电波的数据:
t00.20.40.60.8
y-4040-4
若就同一个问题询问另一个人时,得到以下脑电波数据:当t=0.1时,y=-1,当t=0.5时,y=3.6,根据这些数据,判断此人是否说谎?

查看答案和解析>>

同步练习册答案