【题目】某公司有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出名员工从事第三产业,调整后他们平均每人每年创造利润为万元(),剩下的员工平均每人每年创造的利润可以提高.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则调整员工从事第三产业的人数应在什么范围?
(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,求的取值范围.
科目:高中数学 来源: 题型:
【题目】如图, 与都是正三角形, , .
(Ⅰ)求证: ;
(Ⅱ)若,试求的值,使直线与所成角的正弦值为;
(Ⅲ)若,试写出三棱锥与三棱锥的体积比.(不要求写求解过程)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量件 | 100 | 94 | 93 | 90 | 85 | 78 |
预计在今后的销售中,销量与单价仍然服从这种线性相关关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为( )
(附:对于一组数据,,…,,其回归直线的斜率的最小二乘估计值为.参考数值:,)
A. 9.4元 B. 9.5元 C. 9.6元 D. 9.7元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,B1,B2是椭圆的短轴端点,P是椭圆上异于点B1,B2的一动点.当直线PB1的方程为时,线段PB1的长为.
(1)求椭圆的标准方程;
(2)设点Q满足: .求证:△PB1B2与△QB1B2的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,∠A,∠B,∠C所对边分别为a,b,c,且bsinC+2csinBcosA=0.
(1)求∠A大小;
(2)若a=2,c=2,求△ABC的面积S的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数且x,.
(1)判断的奇偶性,并用定义证明;
(2)若不等式在上恒成立,试求实数a的取值范围;
(3)的值域为函数在上的最大值为M,最小值为m,若成立,求正数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com