【题目】已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,若,使得,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为.
求曲线C的直角坐标方程与直线l的极坐标方程;
Ⅱ若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先阅读下列不等式的证法,再解决后面的问题:
已知,,求证:.
证明:构造函数,
即
.
因为对一切,恒有,
所以,从而得.
(1)若,,请写出上述结论的推广式;
(2)参考上述证法,对你推广的结论加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:.
(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到0.01)
(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年10月18日-27日,第七届世界军人运动会在湖北武汉举办,中国代表团共获得133金64银42铜,共239枚奖牌.为了调查各国参赛人员对主办方的满意程度,研究人员随机抽取了500名参赛运动员进行调查,所得数据如下所示,现有如下说法:①在参与调查的500名运动员中任取1人,抽到对主办方表示满意的男性运动员的概率为;②在犯错误的概率不超过1%的前提下可以认为“是否对主办方表示满意与运动员的性别有关”;③没有99.9%的把握认为“是否对主办方表示满意与运动员的性别有关”;则正确命题的个数为( )附:
男性运动员 | 女性运动员 | |||||
对主办方表示满意 | 200 | 220 | ||||
对主办方表示不满意 | 50 | 30 | ||||
0.100 | 0.050 | 0.010 | 0.001 | |||
k | 2.706 | 3.841 | 6.635 | 10.828 | ||
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com