精英家教网 > 高中数学 > 题目详情

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了16月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

昼夜温差

10

11

13

12

8

6

就诊人数(个)

22

25

29

26

16

12

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

(Ⅰ)若选取的是1月与6月的两组数据,请根据2月至5月份的数据,求出y关于x的线性回归方程x

(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想.

附:(参考数据

【答案】(1);(2)该小组所得线性回归方程是理想的.

【解析】分析:(1)先求均值,代入公式,根据,(2)根据线性回归方程得到的估计数据,再与所选出的检验数据的作差,与2比较,根据结果作判断.

详解:(1)由数据求得=11,=24,

由公式求得b

再由ab=-

y关于x的线性回归方程为x

(2)当x=10时,,|-22|<2;

同样,当x=6时,,|-12|<2,

所以,该小组所得线性回归方程是理想的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;
(3)若点M的横坐标为 ,直线l:y=kx+ 与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当 ≤k≤2时,|AB|2+|DE|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长是2的正方体ABCD﹣A1B1C1D1中,E,F分别为AB,A1C的中点.应用空间向量方法求解下列问题.

(1)求EF的长
(2)证明:EF∥平面AA1D1D;
(3)证明:EF⊥平面A1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在用二次法求方程3x+3x-8=0在(12)内近似根的过程中,已经得到f1)<0f1.5)>0f1.25)<0,则方程的根落在区间(  )

A. B. C. D. 不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线截圆所得的弦长为.直线的方程为

(1)求圆的方程;

(2)若直线过定点,点在圆上,且为线段的中点,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知E,F分别为正方体ABCD﹣A1B1C1D的棱AB,AA1上的点,且AE=AB,AF=AA1 , M,N分别为线段D1E和线段C1F上的点,则与平面ABCD平行的直线MN有(  )
A.1条
B.3条
C.6条
D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是的中点.

(1)求证:平面

(2)求二面角的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为定义在上的偶函数,,且当时,单调递增,则不等式的解集为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,且.

(1)证明:平面平面

(2)若,二面角的大小为,求.

查看答案和解析>>

同步练习册答案