精英家教网 > 高中数学 > 题目详情
焦点在y轴上,焦距是18,离心率e=
3
2
的双曲线方程是(  )
A、
y2
36
-
x2
45
=1
B、
y2
45
-
x2
36
=1
C、
y2
16
-
x2
4
=1
D、
y2
4
-
x2
16
=1
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设双曲线的方程为
y2
a2
-
x2
b2
=1,即有c=9,再由离心率公式可得a,再由a,b,c的关系可得b,进而得到椭圆方程.
解答: 解:设双曲线的方程为
y2
a2
-
x2
b2
=1,
则c=9,
离心率e=
3
2
,即
c
a
=
3
2

则a=6,b=
81-36
=3
5

则双曲线方程为
y2
36
-
x2
45
=1.
故选A.
点评:本题考查双曲线的方程和性质,考查离心率公式的运用,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:log24+(
5
-1)0-(
9
4
 
1
2
+cos
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N+).
(Ⅰ)证明:数列{cn+1-an}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若数列{bn}满足4 h1-14 h2-1…4 hn-1=(an+1) bn(n∈N+),证明{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-y2=a2上任一点P(x,y)到中心的距离为d,它到两焦点的距离分别为d1,d2,试证明d,d1,d2之间满足关系d2=d1d2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
sin(πx)(x∈[-2,0])
3-x+1 (x>0)
,则y=f[f(x)]-4的零点为(  )
A、-
π
2
B、
1
2
C、-
3
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin22x+
3
sin2x•cos2x.
(1)求f(x)的最小正周期;
(2)若x∈[
π
8
π
4
],且f(x)=1,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax(a为常数)
(1)若直线x+y+1=0是曲线y=f(x)的一条切线,求a的值;
(2)求函数f(x)在区间[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2cosx(sinx-cosx).
(1)求f(x)的最小正周期;
(2)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

由不等式组 
x≤0
y≥0
y-x-2≤0
确定的平面区域记为Ω1,不等式组 
x+y≤1
x+y≥-2
确定的平面区域记为Ω2,则Ω1与Ω2公共部分的面积为(  )
A、
15
4
B、
3
2
C、
3
4
D、
7
4

查看答案和解析>>

同步练习册答案