精英家教网 > 高中数学 > 题目详情
设函数f(x)=x-xlnx.数列{an}满足0<a1<1,an+1=f(an).
(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;
(Ⅱ)证明:an<an+1<1;
(Ⅲ)设b∈(a1,1),整数k≥
a1-ba1lnb
.证明:ak+1>b.
分析:(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数在区间(0,1)上的单调性,从而
进行证明.
(2)由题意数列{an}满足0<a1<1,an+1=f(an),求出an+1=an-anlnan,然后利用归纳法进行证明;
(3)由题意f(x)=x-xlnx,an+1=f(an)可得ak+1=ak-b-ak,然后进行讨论求解.
解答:解:(Ⅰ)证明:∵f(x)=x-xlnx,
∴f′(x)=-lnx,
当x∈(0,1)时,f′(x)=-lnx>0
故函数f(x)在区间(0,1)上是增函数;

(Ⅱ)证明:(用数学归纳法)
(i)当n=1时,0<a1<1,a1lna1<0,
a2=f(a1)=a1-a1lna1>a1
∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,
∴f(x)在区间(0,1]是增函数,
a2=f(a1)=a1-a1lna1<1,即a1<a2<1成立,
(ⅱ)假设当x=k(k∈N+)时,ak<ak+1<1成立,
即0<a1≤ak<ak+1<1,
那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤ak<ak+1<1,
得f(ak)<f(ak+1)<f(1),
而an+1=f(an),
则ak+1=f(ak),ak+2=f(ak+1),ak+1<ak+2<1,
也就是说当n=k+1时,an<an+1<1也成立,
根据(ⅰ)、(ⅱ)可得对任意的正整数n,an<an+1<1恒成立.

(Ⅲ)证明:由f(x)=x-xlnx,an+1=f(an)可得
ak+1=ak-b-ak=a1-b-
k
i=1
ailnai

1)若存在某i≤k2,满足ai≤b3,,则由(Ⅱ)知:ak+1-b<ai-b≥04,
2)若对任意i≤k6,都有ai>b,则ak+1=ak-b-aklnak=a1-b-
k
i=1
ailnai
=a1-b-
k
i=1
ailnb
≥a1-b1-ka1ln=0,
即ak+1>b成立.
点评:此题主要考查多项式函数的导数,函数单调性的判定,函数最值,函数、方程与不等式等基础知识及数学归纳法的应用,一般出题者喜欢考查学生的运算求解能力、推理论证能力及分析与解决问题的能力,要出学生会用数形结合的思想、分类与整合思想,化归与转化思想、有限与无限的思想来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案